Files
d3-spring-model/examples/js/src/neighbourSampling-papaparsing.js
Pitchaya Boonsarngsuk 1d711f828d Fix incomplete commits
2018-01-17 10:07:39 +00:00

646 lines
17 KiB
JavaScript

// Get the width and heigh of the SVG element.
var width = +document.getElementById('svg').clientWidth,
height = +document.getElementById('svg').clientHeight;
var svg = d3.select("svg")
.call(d3.zoom().scaleExtent([0.0001, 1000000]).on("zoom", function () {
svg.attr("transform", d3.event.transform);
}))
.append("g");
var div = d3.select("body").append("div")
.attr("class", "tooltip")
.style("opacity", 0);
var brush = d3.brush()
.extent([[-9999999, -9999999], [9999999, 9999999]])
.on("end", brushEnded);
svg.append("g")
.attr("class", "brush")
.call(brush);
var intercom = Intercom.getInstance();
intercom.on("select", unSelectNodes);
var nodes, // as in Data points
node, // as in SVG object that have all small circles on screen
props,
norm,
p1 = 0,
p2 = 0,
size,
distanceFunction,
simulation,
velocities = [],
rendering = true, // Rendering during the execution.
forceName = "forces",
springForce = false,
tooltipWidth = 0,
fileName = "",
selectedData,
clickedIndex = -1,
paused = false;
// Default parameters
var MULTIPLIER = 50,
PERPLEXITY = 30,
LEARNING_RATE = 10,
NEIGHBOUR_SIZE = 6,
SAMPLE_SIZE = 3,
PIVOTS = false,
NUM_PIVOTS = 3,
ITERATIONS = 300,
FULL_ITERATIONS = 20,
NODE_SIZE = 10,
COLOR_ATTRIBUTE = "",
SELECTED_DISTANCE = 10,
FULL_NEIGHBOUR_SIZE = 6,
FULL_SAMPLE_SIZE = 3,
FULL_SELECTED_DISTANCE = 10;
// Create a color scheme for a range of numbers.
var color = d3.scaleOrdinal(d3.schemeCategory10);
/**
* Parse the data from the provided csv file using Papa Parse library
* @param {file} evt - csv file.
*/
function parseFile(evt) {
// Clear the previous nodes
d3.selectAll(".nodes").remove();
springForce = false;
fileName = evt.target.files[0].name;
Papa.parse(evt.target.files[0], {
header: true,
dynamicTyping: true,
skipEmptyLines: true,
complete: function (results) {
processData(results.data, results.error);
}
});
}
/**
* Process the data and pass it into D3 force simulation.
* @param {array} data
* @param {object} error
*/
function processData(data, error) {
if (error) throw error.message;
nodes = data;
size = nodes.length;
simulation = d3.forceSimulation();
// Calculate normalization arguments and get the list of
// properties of the nodes.
norm = calculateNormalization(nodes); // Used with distance fn
props = Object.keys(nodes[0]); // Properties to consider by distance fn
COLOR_ATTRIBUTE = props[props.length-1];
var opts = document.getElementById('color_attr').options;
props.forEach(function (d) {
opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE) ? true : false));
});
opts.selectedIndex = props.length-1;
props.pop(); //Hide Iris index / last column from distance function
//Put the nodes in random starting positions
nodes.forEach(function (d) {
d.x = (Math.random()-0.5) * 100000;
d.y = (Math.random()-0.5) * 100000;
});
// Add the nodes to DOM.
node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(nodes)
.enter().append("circle")
.attr("r", NODE_SIZE)
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE]);
})
.on("mouseover", function (d) {
div.transition()
.duration(200)
.style("opacity", .9);
div.html(formatTooltip(d))
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - (15 * props.length)) + "px")
.style("width", (6 * tooltipWidth) + "px")
.style("height", (14 * props.length) + "px");
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on("mouseout", function (d) {
div.transition()
.duration(500)
.style("opacity", 0);
node.attr("opacity", 1);
})
.on("click", function (d) {
if (clickedIndex !== d.index) {
if (springForce) {
highlightNeighbours(Array.from(simulation.force(forceName).nodeNeighbours(d.index).keys()));
clickedIndex = d.index;
}
} else {
node.attr("r", NODE_SIZE).attr("stroke-width", 0);
clickedIndex = -1;
}
});
// Pass the nodes to the D3 force simulation.
simulation
.nodes(nodes)
.on("tick", ticked)
.on("end", ended);
};
function ticked() {
// If rendering is selected, then draw at every iteration.
if (rendering === true) {
node // Each sub-circle in the SVG, update cx and cy
.attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
}
// Emit the distribution data to allow the drawing of the bar graph
if (springForce) {
intercom.emit("passedData", simulation.force(forceName).distributionData());
}
}
function ended() {
if (rendering !== true) { // Never drawn anything before? Now it's time.
node
.attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
}
if (p1 !== 0) {
// Performance time measurement
p2 = performance.now();
console.log("Execution time: " + (p2 - p1));
// Do not calculate stress for data sets bigger than 100 000.
// if (nodes.length <= 100000) {
// console.log("Stress: ", simulation.force(forceName).stress());
// }
// console.log(simulation.force(forceName).nodeNeighbours());
p1 = 0;
p2 = 0;
}
}
function brushEnded() {
var s = d3.event.selection,
results = [];
if (s) {
var x0 = s[0][0] - width / 2,
y0 = s[0][1] - height / 2,
x1 = s[1][0] - width / 2,
y1 = s[1][1] - height / 2;
if (nodes) {
var sel = node.filter(function (d) {
if (d.x > x0 && d.x < x1 && d.y > y0 && d.y < y1) {
return true;
}
return false;
}).data();
results = sel.map(function (a) { return a.index; });
}
intercom.emit("select", { name: fileName, indices: results });
d3.select(".brush").call(brush.move, null);
}
}
/**
* Format the tooltip for the data
* @param {*} node
*/
function formatTooltip(node) {
var textString = "",
temp = "";
tooltipWidth = 0;
props.forEach(function (element) {
temp = element + ": " + node[element] + "<br/>";
textString += temp;
if (temp.length > tooltipWidth) {
tooltipWidth = temp.length;
}
});
return textString;
}
/**
* Initialize the Chalmers' 1996 algorithm and start simulation.
*/
function startNeighbourSamplingSimulation() {
springForce = true;
simulation.stop();
p1 = performance.now();
simulation
.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.force(forceName, d3.forceNeighbourSamplingDistance()
// Set the parameters for the algorithm (optional).
.neighbourSize(NEIGHBOUR_SIZE)
.sampleSize(SAMPLE_SIZE)
// .freeness(0.5)
.distanceRange(SELECTED_DISTANCE * MULTIPLIER)
// The distance function that will be used to calculate distances
// between nodes.
.distance(function (s, t) {
return distanceFunction(s, t, props, norm) * MULTIPLIER;
})
.stableVelocity(1.2 * MULTIPLIER)
.stableVeloHandler( function(){simulation.stop(); ended();} )
);
// Restart the simulation.
console.log(simulation.force(forceName).neighbourSize(), simulation.force(forceName).sampleSize());
simulation.alpha(1).restart();
}
/**
* Initialize the hybrid layout algorithm and start simulation.
*/
function startHybridSimulation() {
springForce = false;
d3.selectAll(".nodes").remove();
simulation.stop();
p1 = performance.now();
configuration = {
iteration: ITERATIONS,
neighbourSize: NEIGHBOUR_SIZE,
sampleSize: SAMPLE_SIZE,
distanceRange: SELECTED_DISTANCE * MULTIPLIER,
fullIterations: FULL_ITERATIONS,
fullNeighbourSize: FULL_NEIGHBOUR_SIZE,
fullSampleSize: FULL_SAMPLE_SIZE,
fullDistanceRange: FULL_SELECTED_DISTANCE * MULTIPLIER,
distanceFn: function (s, t) {return distanceFunction(s, t, props, norm) * MULTIPLIER;},
pivots: PIVOTS,
numPivots: NUM_PIVOTS
};
console.log(configuration);
hybridSimulation = d3.hybridSimulation(nodes, configuration);
let sample = hybridSimulation.sample();
let remainder = hybridSimulation.remainder();
// Add the nodes to DOM.
node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(sample)
.enter().append("circle")
.attr("r", NODE_SIZE)
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE])
})
.on("mouseover", function (d) {
div.transition()
.duration(200)
.style("opacity", .9);
div.html(formatTooltip(d))
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - (15 * props.length)) + "px")
.style("width", (6 * tooltipWidth) + "px")
.style("height", (14 * props.length) + "px");
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on("mouseout", function (d) {
div.transition()
.duration(500)
.style("opacity", 0);
node.attr("opacity", 1);
});
if (selectedData) {
unSelectNodes(selectedData);
}
hybridSimulation
.on("sampleTick", ticked)
.on("fullTick", ticked)
.on("startFull", startedFull)
.on("end", endedHybrid);
function startedFull() {
d3.selectAll(".nodes").remove();
// Add the nodes to DOM.
node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(nodes)
.enter().append("circle")
.attr("r", NODE_SIZE)
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE])
})
.on("mouseover", function (d) {
div.transition()
.duration(200)
.style("opacity", .9);
div.html(formatTooltip(d))
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - (15 * props.length)) + "px")
.style("width", (6 * tooltipWidth) + "px")
.style("height", (14 * props.length) + "px");
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on("mouseout", function (d) {
div.transition()
.duration(500)
.style("opacity", 0);
node.attr("opacity", 1);
});
if (selectedData) {
unSelectNodes(selectedData);
}
}
function endedHybrid() {
if (rendering !== true) {
node
.attr("cx", function (d) {
return d.x;
})
.attr("cy", function (d) {
return d.y;
});
}
// Performance time measurement
p2 = performance.now();
console.log("Execution time: " + (p2 - p1));
// Do not calculate stress for data sets bigger than 100 000.
// if (nodes.length <= 100000) {
// console.log("Stress: ", hybridSimulation.stress());
// }
p1 = 0;
p2 = 0;
}
}
/**
* Initialize the t-SNE algorithm and start simulation.
*/
function starttSNE() {
springForce = false;
simulation.stop();
p1 = performance.now();
simulation
.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.force(forceName, d3.tSNE()
// Set the parameter for the algorithm (optional).
.perplexity(PERPLEXITY)
.learningRate(LEARNING_RATE)
// The distance function that will be used to calculate distances
// between nodes.
.distance(function (s, t) {
return distanceFunction(s, t, props, norm) * MULTIPLIER;
}));
// Restart the simulation.
console.log(simulation.force(forceName).perplexity(), simulation.force(forceName).learningRate());
simulation.alpha(1).restart();
}
/**
* Initialize the Barnes-Hut algorithm and start simulation.
*/
function startBarnesHutSimulation() {
springForce = false;
simulation.stop();
p1 = performance.now();
simulation
.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.force(forceName, d3.forceBarnesHut()
// The distance function that will be used to calculate distances
// between nodes.
.distance(function (s, t) {
return distanceFunction(s, t, props, norm) * MULTIPLIER;
}));
// Restart the simulation.
simulation.alpha(1).restart();
}
/**
* Initialize the link force algorithm and start simulation.
*/
function startLinkSimulation() {
springForce = false;
simulation.stop();
p1 = performance.now();
let links = [];
// Initialize link array.
nodes = simulation.nodes();
for (i = 0; i < nodes.length; i++) {
for (j = 0; j < nodes.length; j++) {
if (i !== j) {
links.push({
source: nodes[i],
target: nodes[j],
});
}
}
}
// Add the links to the simulation.
simulation.force(forceName, d3.forceLink().links(links));
simulation
.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.force(forceName)
// The distance function that will be used to calculate distances
// between nodes.
.distance(function (n) {
return distanceFunction(n.source, n.target, props, norm) * MULTIPLIER;
})
// Set the parameter for the algorithm (optional).
.strength(1);
// Restart the simulation.
simulation.alpha(1).restart();
}
/**
* Halt the execution.
*/
function stopSimulation() {
simulation.stop();
if (typeof hybridSimulation !== 'undefined') {
hybridSimulation.stop();
}
}
/**
* Calculate the average values of the array.
* @param {array} array
* @return {number} the mean of the array.
*/
function getAverage(array) {
var total = 0;
for (var i = 0; i < array.length; i++) {
total += array[i];
}
return total / array.length;
}
/**
* Deselect the nodes to match the selection from other window.
* @param {*} data
*/
function unSelectNodes(data) {
selectedData = data;
if (fileName === data.name && nodes) {
node
.classed("notSelected", function (d) {
if (data.indices.indexOf(d.index) < 0) {
return true;
}
return false;
});
}
}
/**
* Highlight the neighbours for neighbour and sampling algorithm
* @param {*} indices
*/
function highlightNeighbours(indices) {
node
.attr("r", function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 2;
}
return NODE_SIZE;
})
.attr("stroke-width", function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 0.2 + "px";
}
return "0px";
})
.attr("stroke", "white");
}
/**
* Highlight all the nodes with the same class on hover
* @param {*} highlighValue
*/
function highlightOnHover(highlighValue) {
node.attr("opacity", function (d) {
return (highlighValue === d[COLOR_ATTRIBUTE]) ? 1 : 0.3;
});
}
/**
* Color the nodes according to given attribute.
*/
function colorToAttribute() {
node.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE])
});
}
/**
* Update the distance range.
*/
function updateDistanceRange() {
if (springForce) {
simulation.force(forceName).distanceRange(SELECTED_DISTANCE);
}
}
/**
* Implemented pause/resume functionality
*/
function pauseUnPause() {
if (simulation) {
if (paused) {
simulation.force(forceName).distanceRange(SELECTED_DISTANCE);
simulation.restart();
d3.select("#pauseButton").text("Pause");
paused = false;
} else {
simulation.stop();
d3.select("#pauseButton").text("Resume");
paused = true;
}
}
}
/**
* Average distances for each node.
* @param {*} dataNodes
* @param {*} properties
* @param {*} normalization
*/
function calculateAverageDistance(dataNodes, properties, normalization) {
var sum = 0,
n = nodes.length;
for (var i = 0; i < n; i++) {
var sumNode = 0;
for (var j = 0; j < n; j++) {
if (i !== j) {
sumNode += distanceFunction(nodes[i], nodes[j], properties, normalization);
// console.log(sumNode);
}
}
sum += sumNode / (n - 1);
}
return sum / n;
}