46 Commits

Author SHA1 Message Date
Pitchaya Boonsarngsuk
7ac1fb1ebc แก้ ลืมเปลี่ยนจำนวน its ใน js 2018-03-22 18:00:21 +00:00
Pitchaya Boonsarngsuk
e6073a86d3 Lower range of iterations 2018-03-22 17:44:00 +00:00
Pitchaya Boonsarngsuk
fa5d34f96e แก้ เผลอคอมเมนต์เกิน 2018-03-22 16:53:39 +00:00
Pitchaya Boonsarngsuk
7c2900653e แก้ coding style ภาค 12 2018-03-22 16:47:10 +00:00
Pitchaya Boonsarngsuk
d59e4066d3 แก้ coding style ภาค 11 2018-03-22 16:44:57 +00:00
Pitchaya Boonsarngsuk
7b322b3ea8 แก้ตัวปิดบรรทัด 2018-03-22 16:42:28 +00:00
Pitchaya Boonsarngsuk
b2f5993513 แก้ coding style ภาค 9 (reverted from commit 400eab7e80) 2018-03-22 16:40:35 +00:00
Pitchaya Boonsarngsuk
cd0f3687cb แก้ coding style ภาค 10 2018-03-22 16:40:27 +00:00
Pitchaya Boonsarngsuk
400eab7e80 แก้ coding style ภาค 9 2018-03-22 16:40:14 +00:00
Pitchaya Boonsarngsuk
294cc7724e เพิ่ม script eslint fix 2018-03-22 16:36:27 +00:00
Pitchaya Boonsarngsuk
0d1fa385f8 แก้ coding style ภาค 8 2018-03-22 16:35:48 +00:00
Pitchaya Boonsarngsuk
93af0e646a แก้ coding style ภาค 7 2018-03-22 16:35:00 +00:00
Pitchaya Boonsarngsuk
684878b1fd แก้ coding style ภาค 6 2018-03-22 16:30:41 +00:00
Pitchaya Boonsarngsuk
21ee710468 แก้ coding style ภาค 5 2018-03-22 16:29:10 +00:00
Pitchaya Boonsarngsuk
8e34697d89 แก้ coding style ภาค 4 2018-03-22 16:22:43 +00:00
Pitchaya Boonsarngsuk
f3a6656c8f แก้ coding style ภาค 3 2018-03-22 16:17:48 +00:00
Pitchaya Boonsarngsuk
0cdd927444 แก้ coding style ภาค 2 2018-03-22 16:12:25 +00:00
Pitchaya Boonsarngsuk
2256af7448 แก้ coding style 2018-03-22 16:02:45 +00:00
Pitchaya Boonsarngsuk
b601af68b4 แก้ชื่อตัวแปล 2018-03-22 15:49:22 +00:00
Pitchaya Boonsarngsuk
f316d2755a แก้วงเล็บ 2018-03-22 15:48:30 +00:00
Pitchaya Boonsarngsuk
d31951fa85 Eslint allow console 2018-03-22 15:41:44 +00:00
Pitchaya Boonsarngsuk
7c1886dcc6 Eslint ใช้ ES6 2018-03-22 15:33:16 +00:00
Pitchaya Boonsarngsuk
66da3eb15b Add eslint run script 2018-03-22 15:32:09 +00:00
Pitchaya Boonsarngsuk
6a46342afd เพิ่ม eslint 2018-03-22 15:24:45 +00:00
Pitchaya Boonsarngsuk
b64b99c694 Update license 2018-03-21 16:33:53 +00:00
Pitchaya Boonsarngsuk
e122b0e8ce Rename function 2018-03-21 16:28:58 +00:00
Pitchaya Boonsarngsuk
a253fc54e1 Add space 2018-03-21 16:22:08 +00:00
Pitchaya Boonsarngsuk
757b315309 Edited comments 2018-03-21 16:08:32 +00:00
Pitchaya Boonsarngsuk
bda72e4fa8 Change license to MIT 2018-03-21 15:55:31 +00:00
Pitchaya Boonsarngsuk
a6c350a4d7 Update readme 2018-03-21 15:53:38 +00:00
Pitchaya Boonsarngsuk
0c23730829 Euclidian ignore "Type" 2018-03-21 15:52:02 +00:00
Pitchaya Boonsarngsuk
f8aa4d9fe9 Comment distance fns 2018-03-21 15:51:48 +00:00
brian
eed06cfa42 Update 'README.md' 2018-03-16 11:00:40 +07:00
brian
dccb1280e0 Update 'index.js' 2018-03-16 10:20:24 +07:00
brian
047d89f004 Update 'src/interpolation/interpolationPivots.js' 2018-03-16 10:20:00 +07:00
brian
6335389c7c Update 'src/interpolation/interpBruteForce.js' 2018-03-16 10:19:13 +07:00
brian
5b75f5b588 Remove stress function import in hybrid object 2018-03-16 10:16:45 +07:00
6d202e7e96 Remove intercom, fix iris 2018-03-14 18:01:24 +00:00
f72218a778 Set default stable velo to 0 2018-03-14 15:26:07 +00:00
Pitchaya Boonsarngsuk
7a267d0de2 Edit comments 2018-03-13 01:17:50 +00:00
Pitchaya Boonsarngsuk
6df7e225ba Move example JS files 2018-03-13 01:07:40 +00:00
Pitchaya Boonsarngsuk
f8caf36d62 Add data 2018-03-12 20:36:03 +00:00
Pitchaya Boonsarngsuk
4a64c7eaeb Fix 1 extra { 2018-02-12 08:51:58 +00:00
Pitchaya Boonsarngsuk
5ee568b1cb Add extra end condition for hybrid phase 3 2018-02-12 08:27:09 +00:00
Pitchaya Boonsarngsuk
6813be06df Velo changes scale per node instead 2018-02-12 08:06:53 +00:00
Pitchaya Boonsarngsuk
b88d3c9bfa Remove from "TO WRITE" readme 2018-02-10 16:27:58 +00:00
38 changed files with 2552138 additions and 2798 deletions

19
.eslintrc Normal file
View File

@@ -0,0 +1,19 @@
parserOptions:
sourceType: module
extends:
"standard"
rules:
no-cond-assign: 0
no-console: 0
semi:
- error
- always
no-return-assign: 0
one-var: 0
env:
es6: true
globals:
console: false
performance: false

696
LICENSE
View File

@@ -1,678 +1,24 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
d3-spring-model Copyright (C) 2018 Pitchaya Boonsarngsuk
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
The MIT License (MIT)
Copyright (c) 2018 Pitchaya Boonsarngsuk
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

480
README.md
View File

@@ -1,240 +1,240 @@
# d3-spring-model
This module implements three force-directed layout algorithms to visualize high-dimensional data in 2D space.
1. Basic spring model algorithm. In this model, every data point (node) pairs are connected with a spring that pushes or pulls, depending on the difference between 2D and high-dimensional distance. This is a tweaked version of [D3's force link](https://github.com/d3/d3-force#forceLink) with functionalities removed to improve performance and lower the memory usage.
1. Neighbour and Sampling algorithm. It uses stochastic sampling to find the best neighbours for high-dimensional data and creates the layout in 2 dimensions.
1. Hybrid layout algorithm. It performs Neighbour and Sampling algorithm on a subset of data before interpolating the rest onto the 2D space. Neighbour and Sampling algorithm may also be run over the full dataset at the end to refine placement.
During the interpolation, each node have to find a parent, a closest node that has already been plotted on the 2D space. Two methods of of finding the parents have been implemented.
1. Bruteforce searching. This method takes more time but guaranteed that the parent found is the best one.
1. Pivot-based searching. This method introduce a one-off pre-processing time but will make parent finding of each node faster. The parent found may not be the best one but should still be near enough to provide good results.
These algorithms are useful for producing visualizations that show relationships between the data. For instance:
![Iris data set](img/IrisLink.png)
![Part of Poker Hands data set](img/Poker3000Link.png)
### Authors
Pitchaya Boonsarngsuk
Based on [d3-neighbour-sampling](https://github.com/sReeper/d3-neighbour-sampling) by Remigijus Bartasius and Matthew Chalmers under MIT license.
Based on [d3-force](https://github.com/d3/d3-force) by Mike Bostock under BSD 3-Clause license.
### Reference
- Chalmers, M. ["A linear iteration time layout algorithm for visualising high-dimensional data."](http://dl.acm.org/citation.cfm?id=245035) Proceedings of the 7th conference on Visualization'96. IEEE Computer Society Press, 1996.
- Morrison, A., Ross, G. & Chalmers, M. ["A Hybrid Layout Algorithm for Sub-Quadratic Multidimensional Scaling."](https://dl.acm.org/citation.cfm?id=857191.857738) INFOVIS '02 Proceedings of the IEEE Symposium on Information Visualization, 2002
- Morrison, A. & Chalmers, M. ["Improving hybrid MDS with pivot-based searching."](https://dl.acm.org/citation.cfm?id=1947387) INFOVIS'03 Proceedings of the Ninth annual IEEE conference on Information visualization, 2003
## Usage
Download the [latest release](https://git.win32exe.tech/brian/d3-spring-model/releases) and load either the full and minified version alongside [D3 4.0](https://github.com/d3/d3).
```html
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="d3-spring-model.min.js"></script>
<script>
var simulation = d3.forceSimulation(nodes);
</script>
```
## File structure
- [index.js](index.js) Export list of the module
- [src/](src) Source code of the module
- [package.json](package.json) Node.js moudle descriptor with build scripts
- [img](img) Images for this readme file
- [examples](examples) An example page running all the algorithms implemented
## Building
```bash
npm run build # Clean build folder and build the module into a single js file.
npm run minify # Minify the built js file.
npm run zip # Zip built files and documents for release.
```
See [package.json](package.json) for more details.
## API Reference
### Spring Model
The model connect every nodes together with a "spring", a link force that pushes linked nodes together or apart according to the desired distance. The strength of the "spring" force is proportional to the difference between the linked nodes distance and the target distance.
The implementation is based on [d3.forceLink()](https://github.com/d3/d3-force#forceLink) with the list of springs locked down so that every nodes are connected to each other. This comes with the benefit of huge memory usage decrease and lower the initialization time.
<a name="forceLinkFullyConnected" href="#forceLinkFullyConnected">#</a> d3.**forceLinkFullyConnected**() [<>](src/link.js "Source")
Creates a new link force with default parameters.
<a name="springLink_distance" href="#springLink_distance">#</a> *springLink*.**distance**([<i>distance</i>])
If *distance* is specified, sets the distance accessor to the specified number or function, re-evaluates the distance accessor for each link, and returns this force. If *distance* is not specified, returns the current distance accessor, which defaults to:
```js
function distance() {
return 30;
}
```
The distance accessor is invoked for each pair of node. If it is a function, the two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
The resulting number is then stored internally, such that the distance of each link is only recomputed when the force is initialized or when this method is called with a new *distance*, and not on every application of the force.
<a name="springLink_iterations" href="#springLink_iterations">#</a> *springLink*.**iterations**([*iterations*])
If *iterations* is specified, sets the number of iterations per application to the specified number and returns this force. If *iterations* is not specified, returns the current iteration count which defaults to 1. Increasing the number of iterations greatly increases the rigidity of the constraint, but also increases the runtime cost to evaluate the force.
<a name="springLink_latestAccel" href="#springLink_latestAccel">#</a> *springLink*.**latestAccel**()
Returns the average velocity changes of the latest iteration.
<a name="springLink_stableVelocity" href="#springLink_stableVelocity">#</a> *springLink*.**stableVelocity**([*threshold*])
If *threshold* is specified, sets a threshold and returns this force. When the average velocity changes of the system goes below the threshold, the function [onStableVelo's handler](#springLink_onStableVelo) will be called. Set it to 0 or less or remove the [handler](#neighbourSampling_latestForce) to disable the threshold checking. If *threshold* is not specified, returns the current value, which defaults to 0.
<a name="springLink_onStableVelo" href="#springLink_onStableVelo">#</a> *springLink*.**onStableVelo**([*handler*])
If *handler* is specified, sets a handler function which will be called at the end of each iteration if the average velocity changes of the system goes below the [threshold](#neighbourSampling_stableVelocity), and returns this force. To remove the handler, change it to null. If *threshold* is not specified, returns the current value, which defaults to null.
### Neighbour and Sampling
The neighbour and sampling algorithm simplifies the model by only calculating the spring force of each node against several nearby and random nodes, at the cost of providing less accurate layout. In order for it to work properly, a distance function should be specified.
<a name="forceNeighbourSampling" href="#forceNeighbourSampling">#</a> d3.**forceNeighbourSampling**() [<>](src/neighbourSampling.js "Source")
Initializes the Neighbour and Sampling force with default parameters.
<a name="neighbourSampling_distance" href="#neighbourSampling_distance">#</a> *neighbourSampling*.**distance**([*distance*]) [<>](https://github.com/sReeper/d3-neighbour-sampling/blob/master/src/neighbourSampling.js#L230 "Source")
If *distance* is specified, sets the distance accessor to the specified number or function, re-evaluates the distance accessor for each link, and returns this force. If *distance* is not specified, returns the current distance accessor, which defaults to:
```js
function distance() {
return 300;
}
```
The distance accessor is invoked for each pair of node. If it is a function, the two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
<a name="neighbourSampling_neighbourSize" href="#neighbourSampling_neighbourSize">#</a> *neighbourSampling*.**neighbourSize**([*neighbourSize*])
If *neighbourSize* is specified, sets the neighbour set size to the specified number and returns this force. If *neighbourSize* is not specified, returns the current value, which defaults to 10.
<a name="neighbourSampling_sampleSize" href="#neighbourSampling_sampleSize">#</a> *neighbourSampling*.**sampleSize**([*sampleSize*])
If *sampleSize* is specified, sets the sample set size to the specified number and returns this force. If *sampleSize* is not specified, returns the current value, which defaults to 10.
<a name="neighbourSampling_latestAccel" href="#neighbourSampling_latestAccel">#</a> *neighbourSampling*.**latestAccel**()
Returns the average velocity changes of the latest iteration.
<a name="neighbourSampling_stableVelocity" href="#neighbourSampling_stableVelocity">#</a> *neighbourSampling*.**stableVelocity**([*threshold*])
If *threshold* is specified, sets a threshold and returns this force. When the average velocity changes of the system goes below the threshold, the function [onStableVelo's handler](#neighbourSampling_latestForce) will be called. Set it to 0 or less or remove the [handler](#neighbourSampling_latestForce) to disable the threshold checking. If *threshold* is not specified, returns the current value, which defaults to 0.
<a name="neighbourSampling_onStableVelo" href="#neighbourSampling_onStableVelo">#</a> *neighbourSampling*.**onStableVelo**([*handler*])
If *handler* is specified, sets a handler function which will be called at the end of each iteration if the average velocity changes of the system goes below the [threshold](#neighbourSampling_stableVelocity), and returns this force. To remove the handler, change it to null. If *threshold* is not specified, returns the current value, which defaults to null.
### Hybrid Layout Simulation - TO WRITE
The hybrid layout algorithm reduces the computation power usage even further by performing neighbour and sampling algorithm on only $\sqrt{n}$ sample subset of the data, and interpolating the rest in. Neighbour and sampling algorithm may also be ran again over the full dataset after the interpolation to refine the layout. This algorithm is only recommended for visualizing larger dataset.
<a name="hybrid" href="#hybrid">#</a> d3.**hybridSimulation**(*simulation*, *forceSample*, [*forceFull*]) [<>](src/hybridSimulation.js "Source")
Creates a new hybrid layout simulation default parameters. The simulation will takeover control of [d3.forceSimulation](https://github.com/d3/d3-force#forceSimulation) provided (*simulation* parameter). *forceSample* and *forceFull* are pre-configured [d3.forceNeighbourSampling](#forceNeighbourSampling) forces to be run over the $\sqrt{n}$ samples and full dataset respectively. While unsupported, other D3 forces such as [d3.forceLinkFullyConnected](forceLinkFullyConnected) may also work.
*forceSample* may have [stableVelocity](neighbourSampling_stableVelocity) configured to end the simulation and begin the interpolation phase early, but any [handler](neighbourSampling_onStableVelo) functions will be replaced be hybridSimulation's own internal function.
*forceSample* may be absent, null, or undefined to skip the final refinement.
*simulation* should have already been loaded with nodes. If there are any changes in the list of nodes, the simulation have to be re-set using the [.simulation](#hybrid_simulation) method.
<a name="hybrid_simulation" href="#hybrid_simulation">#</a> *hybrid*.**simulation**([*simulation*])
If *simulation* is specified, sets the [d3.forceSimulation](https://github.com/d3/d3-force#forceSimulation) to the given object and returns this layout simulation. Node list will be refreshed. If *simulation* is not specified, returns the current value, which defaults to 20.
<a name="hybrid_subSet" href="#hybrid_subSet">#</a> *hybrid*.**subSet**()
Returns the list of nodes in the $\sqrt{n}$ sample set. This is randomly selected on initialization or the nodes list have been refreshed by [.simulation](#hybrid_simulation) method. These nodes will be placed on 2D space from the beginning.
<a name="hybrid_nonSubSet" href="#hybrid_nonSubSet">#</a> *hybrid*.**nonSubSet**()
Returns the list of nodes outside of the $\sqrt{n}$ sample set. This is randomly selected on initialization or the nodes list have been refreshed by [.simulation](#hybrid_simulation) method. These nodes will be interpolated onto 2D space later on.
<a name="hybrid_forceSample" href="#hybrid_forceSample">#</a> *hybrid*.**forceSample**([*force*])
If *force* is specified, sets the neighbour and sampling force to run on the $\sqrt{n}$ samples before interpolation and returns this layout simulation. The same limitation applies: [stableVelocity](neighbourSampling_stableVelocity) may be configured to end the simulation and begin the interpolation phase early, but any [handler](neighbourSampling_onStableVelo) functions will be replaced be hybridSimulation's own internal function. If *force* is not specified, returns the current force object.
<a name="hybrid_forceFull" href="#hybrid_forceFull">#</a> *hybrid*.**forceFull**([*force*])
If *force* is specified, sets the neighbour and sampling force to run on the whole dataset after interpolation and returns this layout simulation. If set to null, the process will be skipped. If *force* is not specified, returns the current force object.
<a name="hybrid_sampleIterations" href="#hybrid_sampleIterations">#</a> *hybrid*.**sampleIterations**([*iterations*])
If *iterations* is specified, sets the number of iterations to run neighbour and sampling on the $\sqrt{n}$ samples before interpolation and returns this layout simulation. If *iterations* is not specified, returns the current value, which defaults to 300.
<a name="hybrid_fullIterations" href="#hybrid_fullIterations">#</a> *hybrid*.**fullIterations**([*iterations*])
If *iterations* is specified, sets the number of iterations to run neighbour and sampling on the whole dataset after interpolation and returns this layout simulation. If set to a number less than 1, the process will be skipped. If *iterations* is not specified, returns the current value, which defaults to 20.
<a name="hybrid_numPivots" href="#hybrid_numPivots">#</a> *hybrid*.**numPivots**([*number*])
If *number* is specified, sets the number of pivots used to find parents during the interpolation process and returns this layout simulation. If *number* is less than 1, brute-force method will be used instead. If *number* is not specified, returns the current value, which defaults to 0 (brute-force method).
<a name="hybrid_interpDistanceFn" href="#hybrid_interpDistanceFn">#</a> *hybrid*.**interpDistanceFn**([*distance*])
If *distance* is specified, sets the distance accessor used during the interpolation process to the specified number or function and returns this layout simulation. If *distance* is not specified, returns the current distance accessor, which defaults to the one provided by the force for full dataset or
```js
function distance() {
return 300;
}
```
If *distance* is a function, two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
<a name="hybrid_interpFindTuneIts" href="#hybrid_interpFindTuneIts">#</a> *hybrid*.**interpFindTuneIts**([*number*])
During the interpolation, each node will find a "parent", a near sample node whose 2D location is known. The parent will be used to find an initial location for the node. After that, spring forces are applied to the node against $\sqrt{\sqrt{n}}$ samples to fine-tune the location for a *number* of iterations. This is not to be confused with the neighbour and sampling refinement after the entire interpolation process is completed.
If *number* is specified, sets the number of refinement during the interpolation process and returns this layout simulation. If *number* is not specified, returns the current value, which defaults to 20.
<a name="hybrid_on" href="#hybrid_on">#</a> <i>hybrid</i>.<b>on</b>(*typenames*, [*listener*])
If *listener* is specified, sets the event *listener* for the specified *typenames* and returns this layout simulation. If an event listener was already registered for the same type and name, the existing listener is removed before the new listener is added. If *listener* is null, removes the current event listeners for the specified *typenames*, if any. If *listener* is not specified, returns the first currently-assigned listener matching the specified *typenames*, if any. When a specified event is dispatched, each *listener* will be invoked with the `this` context as the simulation.
The *typenames* is a string containing one or more *typename* separated by whitespace. Each *typename* is a *type*, optionally followed by a period (`.`) and a *name*, such as `tick.foo` and `tick.bar`; the name allows multiple listeners to be registered for the same *type*. The *type* must be one of the following:
* `sampleTick` - after each update of the simulation on the $\sqrt{n}$ subset.
* `fullTick` - after each update of the simulation on the full dataset.
* `startInterp` - just before the interpolation process
* `end` - after the hybrid sumulation ends.
Note that *tick* events are not dispatched when [*simulation*.tick](#simulation_tick) is called manually; events are only dispatched by the internal timer and are intended for interactive rendering of the simulation. To affect the simulation, register [forces](#simulation_force) instead of modifying nodes positions or velocities inside a tick event listener.
See [*dispatch*.on](https://github.com/d3/d3-dispatch#dispatch_on) for details.
<a name="hybrid_restart" href="#hybrid_restart">#</a> *hybrid*.**restart**()
Start or continue the simulation where it was left off and returns this layout simulation.
<a name="hybrid_stop" href="#hybrid_stop">#</a> *hybrid*.**stop**()
Stops the simulation, if it is running, and returns this layout simulation. If the it has already stopped, this method does nothing.
### Miscellaneous
<a name="calculateStress" href="#calculateStress">#</a> d3.**calculateStress**(*nodes*, *distance*) [<>](src/stress.js "Source")
Calculate stress of a whole system, based on sum-of-squared errors of inter-object distances. *nodes* is the array of all nodes in the system and *distance* is the function to calculate the desired distance between two node objects. *distance* is expected to have the same prototype as the one in [springLink](#springLink_distance).
# d3-spring-model
This module implements three force-directed layout algorithms to visualize high-dimensional data in 2D space.
1. Basic spring model algorithm. In this model, every data point (node) pairs are connected with a spring that pushes or pulls, depending on the difference between 2D and high-dimensional distance. This is a tweaked version of [D3's force link](https://github.com/d3/d3-force#forceLink) with functionalities removed to improve performance and lower the memory usage.
1. Neighbour and Sampling algorithm. It uses stochastic sampling to find the best neighbours for high-dimensional data and creates the layout in 2 dimensions.
1. Hybrid layout algorithm. It performs Neighbour and Sampling algorithm on a subset of data before interpolating the rest onto the 2D space. Neighbour and Sampling algorithm may also be run over the full dataset at the end to refine placement.
During the interpolation, each node have to find a parent, a closest node that has already been plotted on the 2D space. Two methods of of finding the parents have been implemented.
1. Bruteforce searching. This method takes more time but guaranteed that the parent found is the best one.
1. Pivot-based searching. This method introduce a one-off pre-processing time but will make parent finding of each node faster. The parent found may not be the best one but should still be near enough to provide good results.
These algorithms are useful for producing visualizations that show relationships between the data. For instance:
![Iris data set](img/IrisLink.png)
![Part of Poker Hands data set](img/Poker3000Link.png)
### Authors
Pitchaya Boonsarngsuk
Based on [d3-neighbour-sampling](https://github.com/sReeper/d3-neighbour-sampling) by Remigijus Bartasius and Matthew Chalmers under MIT license.
Based on [d3-force](https://github.com/d3/d3-force) by Mike Bostock under BSD 3-Clause license.
### Reference
- Chalmers, M. ["A linear iteration time layout algorithm for visualising high-dimensional data."](http://dl.acm.org/citation.cfm?id=245035) Proceedings of the 7th conference on Visualization'96. IEEE Computer Society Press, 1996.
- Morrison, A., Ross, G. & Chalmers, M. ["A Hybrid Layout Algorithm for Sub-Quadratic Multidimensional Scaling."](https://dl.acm.org/citation.cfm?id=857191.857738) INFOVIS '02 Proceedings of the IEEE Symposium on Information Visualization, 2002
- Morrison, A. & Chalmers, M. ["Improving hybrid MDS with pivot-based searching."](https://dl.acm.org/citation.cfm?id=1947387) INFOVIS'03 Proceedings of the Ninth annual IEEE conference on Information visualization, 2003
## Usage
Download the [latest release](https://git.win32exe.tech/brian/d3-spring-model/releases) and load either the full and minified version alongside [D3 4.0](https://github.com/d3/d3).
```html
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="d3-spring-model.min.js"></script>
<script>
var simulation = d3.forceSimulation(nodes);
</script>
```
## File structure
- [index.js](index.js) Export list of the module
- [src/](src) Source code of the module
- [package.json](package.json) Node.js moudle descriptor with build scripts
- [examples/](examples) An example page implementing the library
- [img/](img) Images for this readme file
## Building
```bash
npm run build # Clean build folder and build the module into a single js file.
npm run minify # Minify the built js file.
npm run zip # Zip built files and documents for release.
```
See [package.json](package.json) for more details.
## API Reference
### Spring Model
The model connect every nodes together with a "spring", a link force that pushes linked nodes together or apart according to the desired distance. The strength of the "spring" force is proportional to the difference between the linked nodes distance and the target distance.
The implementation is based on [d3.forceLink()](https://github.com/d3/d3-force#forceLink) with the list of springs locked down so that every nodes are connected to each other. This comes with the benefit of huge memory usage decrease and lower the initialization time.
<a name="forceLinkFullyConnected" href="#forceLinkFullyConnected">#</a> d3.**forceLinkFullyConnected**() [<>](src/link.js "Source")
Creates a new tweaked link force with default parameters.
<a name="springLink_distance" href="#springLink_distance">#</a> *springLink*.**distance**([<i>distance</i>])
If *distance* is specified, sets the distance accessor to the specified number or function, re-evaluates the distance accessor for each link, and returns this force. If *distance* is not specified, returns the current distance accessor, which defaults to:
```js
function distance() {
return 30;
}
```
The distance accessor is invoked for each pair of node. If it is a function, the two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
The resulting number is then stored internally, such that the distance of each link is only recomputed when the force is initialized or when this method is called with a new *distance*, and not on every application of the force.
<a name="springLink_iterations" href="#springLink_iterations">#</a> *springLink*.**iterations**([*iterations*])
If *iterations* is specified, sets the number of iterations per application to the specified number and returns this force. If *iterations* is not specified, returns the current iteration count which defaults to 1. Increasing the number of iterations greatly increases the rigidity of the constraint, but also increases the runtime cost to evaluate the force.
<a name="springLink_latestAccel" href="#springLink_latestAccel">#</a> *springLink*.**latestAccel**()
Returns the average velocity changes of the latest iteration. The value is only calculated if [threshold checking](#springLink_stableVelocity) is enabled.
<a name="springLink_stableVelocity" href="#springLink_stableVelocity">#</a> *springLink*.**stableVelocity**([*threshold*])
If *threshold* is specified, sets a threshold and returns this force. When the average velocity changes of the system goes below the threshold, the function [onStableVelo's handler](#springLink_onStableVelo) will be called. Set it to 0 or less or remove the [handler](#springLink_onStableVelo) to disable the threshold checking. If *threshold* is not specified, returns the current value, which defaults to 0.
<a name="springLink_onStableVelo" href="#springLink_onStableVelo">#</a> *springLink*.**onStableVelo**([*handler*])
If *handler* is specified, sets a handler function which will be called at the end of each iteration if the average velocity changes of the system goes below the [threshold](#springLink_stableVelocity), and returns this force. To remove the handler, change it to null. If *threshold* is not specified, returns the current value, which defaults to null.
### Neighbour and Sampling
The neighbour and sampling algorithm simplifies the model by only calculating the spring force of each node against several nearby and random nodes, at the cost of providing less accurate layout. In order for it to work properly, a distance function should be specified.
<a name="forceNeighbourSampling" href="#forceNeighbourSampling">#</a> d3.**forceNeighbourSampling**() [<>](src/neighbourSampling.js "Source")
Initializes the Neighbour and Sampling force with default parameters.
<a name="neighbourSampling_distance" href="#neighbourSampling_distance">#</a> *neighbourSampling*.**distance**([*distance*]) [<>](https://github.com/sReeper/d3-neighbour-sampling/blob/master/src/neighbourSampling.js#L230 "Source")
If *distance* is specified, sets the distance accessor to the specified number or function, re-evaluates the distance accessor for each link, and returns this force. If *distance* is not specified, returns the current distance accessor, which defaults to:
```js
function distance() {
return 300;
}
```
The distance accessor is invoked for each pair of node. If it is a function, the two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
<a name="neighbourSampling_neighbourSize" href="#neighbourSampling_neighbourSize">#</a> *neighbourSampling*.**neighbourSize**([*neighbourSize*])
If *neighbourSize* is specified, sets the neighbour set size to the specified number and returns this force. If *neighbourSize* is not specified, returns the current value, which defaults to 10.
<a name="neighbourSampling_sampleSize" href="#neighbourSampling_sampleSize">#</a> *neighbourSampling*.**sampleSize**([*sampleSize*])
If *sampleSize* is specified, sets the sample set size to the specified number and returns this force. If *sampleSize* is not specified, returns the current value, which defaults to 10.
<a name="neighbourSampling_latestAccel" href="#neighbourSampling_latestAccel">#</a> *neighbourSampling*.**latestAccel**()
Returns the average velocity changes of the latest iteration. The value is only calculated if [threshold checking](#neighbourSampling_stableVelocity) is enabled.
<a name="neighbourSampling_stableVelocity" href="#neighbourSampling_stableVelocity">#</a> *neighbourSampling*.**stableVelocity**([*threshold*])
If *threshold* is specified, sets a threshold and returns this force. When the average velocity changes of the system goes below the threshold, the function [onStableVelo's handler](#neighbourSampling_latestForce) will be called. Set it to 0 or less or remove the [handler](#neighbourSampling_latestForce) to disable the threshold checking. If *threshold* is not specified, returns the current value, which defaults to 0.
<a name="neighbourSampling_onStableVelo" href="#neighbourSampling_onStableVelo">#</a> *neighbourSampling*.**onStableVelo**([*handler*])
If *handler* is specified, sets a handler function which will be called at the end of each iteration if the average velocity changes of the system goes below the [threshold](#neighbourSampling_stableVelocity), and returns this force. To remove the handler, change it to null. If *threshold* is not specified, returns the current value, which defaults to null.
### Hybrid Layout Simulation
The hybrid layout algorithm reduces the computation power usage even further by performing neighbour and sampling algorithm on only $\sqrt{n}$ sample subset of the data, and interpolating the rest in. Neighbour and sampling algorithm may also be ran again over the full dataset after the interpolation to refine the layout. This algorithm is only recommended for visualizing larger dataset.
<a name="hybrid" href="#hybrid">#</a> d3.**hybridSimulation**(*simulation*, *forceSample*, [*forceFull*]) [<>](src/hybridSimulation.js "Source")
Creates a new hybrid layout simulation default parameters. The simulation will take control of the provided [d3.forceSimulation](https://github.com/d3/d3-force#forceSimulation) (the *simulation* parameter). *forceSample* and *forceFull* are pre-configured [d3.forceNeighbourSampling](#forceNeighbourSampling) forces to be run over the $\sqrt{n}$ samples and full dataset respectively. While unsupported, other D3 forces such as [d3.forceLinkFullyConnected](forceLinkFullyConnected) may also work.
*forceSample* and *forceFull* may have [stableVelocity](neighbourSampling_stableVelocity) configured to end the relevant phase early, but any [handler](neighbourSampling_onStableVelo) functions will be replaced be hybridSimulation's own internal function.
*forceFull* may also be absent, null, or undefined to skip the final phase.
*simulation* should have already been loaded with nodes. If there are any changes in the list of nodes, the simulation have to be re-set using the [.simulation](#hybrid_simulation) method.
<a name="hybrid_simulation" href="#hybrid_simulation">#</a> *hybrid*.**simulation**([*simulation*])
If *simulation* is specified, sets the [d3.forceSimulation](https://github.com/d3/d3-force#forceSimulation) to the given object and returns this layout simulation. Node list will be refreshed. If *simulation* is not specified, returns the current value, which defaults to 20.
<a name="hybrid_subSet" href="#hybrid_subSet">#</a> *hybrid*.**subSet**()
Returns the list of nodes in the $\sqrt{n}$ sample set. This is randomly selected on initialization or after the nodes list have been refreshed by [.simulation](#hybrid_simulation) method. These nodes will be placed on 2D space from the beginning.
<a name="hybrid_nonSubSet" href="#hybrid_nonSubSet">#</a> *hybrid*.**nonSubSet**()
Returns the list of nodes outside of the $\sqrt{n}$ sample set. This is randomly selected on initialization or after the nodes list have been refreshed by [.simulation](#hybrid_simulation) method. These nodes will be interpolated onto 2D space later on.
<a name="hybrid_forceSample" href="#hybrid_forceSample">#</a> *hybrid*.**forceSample**([*force*])
If *force* is specified, sets the neighbour and sampling force to run on the $\sqrt{n}$ samples before interpolation and returns this layout simulation. The same limitation applies: [stableVelocity](neighbourSampling_stableVelocity) may be configured to end the simulation and begin the interpolation phase early, but any [handler](neighbourSampling_onStableVelo) functions will be replaced be hybridSimulation's own internal function. If *force* is not specified, returns the current force object.
<a name="hybrid_forceFull" href="#hybrid_forceFull">#</a> *hybrid*.**forceFull**([*force*])
If *force* is specified, sets the neighbour and sampling force to run on the whole dataset after interpolation and returns this layout simulation. The same limitation applies: [stableVelocity](neighbourSampling_stableVelocity) may be configured to end the simulation and begin the interpolation phase early, but any [handler](neighbourSampling_onStableVelo) functions will be replaced be hybridSimulation's own internal function. If set to null, the process will be skipped. If *force* is not specified, returns the current force object.
<a name="hybrid_sampleIterations" href="#hybrid_sampleIterations">#</a> *hybrid*.**sampleIterations**([*iterations*])
If *iterations* is specified, sets the number of iterations to run neighbour and sampling on the $\sqrt{n}$ samples before interpolation and returns this layout simulation. If *iterations* is not specified, returns the current value, which defaults to 300. If [stableVelocity](neighbourSampling_stableVelocity) is set on [forceSample](#hybrid_forceSample), the phase may end before the number of iteration reaches the specied value.
<a name="hybrid_fullIterations" href="#hybrid_fullIterations">#</a> *hybrid*.**fullIterations**([*iterations*])
If *iterations* is specified, sets the number of iterations to run neighbour and sampling on the whole dataset after interpolation and returns this layout simulation. If set to a number less than 1, the process will be skipped. If *iterations* is not specified, returns the current value, which defaults to 20. If [stableVelocity](neighbourSampling_stableVelocity) is set on [forceFull](#hybrid_forceFull), the phase may end before the number of iteration reaches the specied value.
<a name="hybrid_numPivots" href="#hybrid_numPivots">#</a> *hybrid*.**numPivots**([*number*])
If *number* is specified, sets the number of pivots used to find parents during the interpolation process and returns this layout simulation. If *number* is less than 1, brute-force method will be used instead. If *number* is not specified, returns the current value, which defaults to 0 (brute-force method).
<a name="hybrid_interpDistanceFn" href="#hybrid_interpDistanceFn">#</a> *hybrid*.**interpDistanceFn**([*distance*])
If *distance* is specified, sets the distance accessor used during the interpolation process to the specified number or function and returns this layout simulation. If *distance* is not specified, returns the current distance accessor, which defaults to the one provided by the force for full dataset or
```js
function distance() {
return 300;
}
```
If *distance* is a function, two nodes will be passed as the two arguments as follow:
```js
function distance(nodeA, nodeB) { return NumberDistanceBetweenAandB; }
```
<a name="hybrid_interpFindTuneIts" href="#hybrid_interpFindTuneIts">#</a> *hybrid*.**interpFindTuneIts**([*number*])
During the interpolation, each node will find a "parent", a near sample node whose 2D location is known. The parent will be used to find an initial location for the node. After that, spring forces are applied to the node against $\sqrt{\sqrt{n}}$ samples to fine-tune the location for a *number* of iterations. This is not to be confused with the neighbour and sampling refinement after the entire interpolation process is completed.
If *number* is specified, sets the number of refinement during the interpolation process and returns this layout simulation. If *number* is not specified, returns the current value, which defaults to 20.
<a name="hybrid_on" href="#hybrid_on">#</a> <i>hybrid</i>.<b>on</b>(*typenames*, [*listener*])
If *listener* is specified, sets the event *listener* for the specified *typenames* and returns this layout simulation. If an event listener was already registered for the same type and name, the existing listener is removed before the new listener is added. If *listener* is null, removes the current event listeners for the specified *typenames*, if any. If *listener* is not specified, returns the first currently-assigned listener matching the specified *typenames*, if any. When a specified event is dispatched, each *listener* will be invoked with the `this` context as the simulation.
The *typenames* is a string containing one or more *typename* separated by whitespace. Each *typename* is a *type*, optionally followed by a period (`.`) and a *name*, such as `tick.foo` and `tick.bar`; the name allows multiple listeners to be registered for the same *type*. The *type* must be one of the following:
* `sampleTick` - after each update of the simulation on the $\sqrt{n}$ subset.
* `fullTick` - after each update of the simulation on the full dataset.
* `startInterp` - just before the interpolation process
* `end` - after the hybrid sumulation ends.
Note that *tick* events are not dispatched when [*simulation*.tick](#simulation_tick) is called manually; events are only dispatched by the internal timer and are intended for interactive rendering of the simulation. To affect the simulation, register [forces](#simulation_force) instead of modifying nodes positions or velocities inside a tick event listener.
See [*dispatch*.on](https://github.com/d3/d3-dispatch#dispatch_on) for details.
<a name="hybrid_restart" href="#hybrid_restart">#</a> *hybrid*.**restart**()
Start or continue the simulation where it was left off and returns this layout simulation.
<a name="hybrid_stop" href="#hybrid_stop">#</a> *hybrid*.**stop**()
Stops the simulation, if it is running, and returns this layout simulation. If the it has already stopped, this method does nothing.
### Miscellaneous
<a name="calculateStress" href="#calculateStress">#</a> d3.**calculateStress**(*nodes*, *distance*) [<>](src/stress.js "Source")
Calculate stress of a whole system, based on sum-of-squared errors of inter-object distances. *nodes* is the array of all nodes in the system and *distance* is the function to calculate the desired distance between two node objects. *distance* is expected to have the same prototype as the one in [springLink](#springLink_distance).

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -101,8 +101,8 @@
<br/>
<label title="Number of iterations before the simulation is stopped">
Iterations
<output id="iterationsSliderOutput">300</output>
<input type="range" min="5" max="5000" value="300" step="5" oninput="d3.select('#iterationsSliderOutput').text(value); ITERATIONS=value;">
<output id="iterationsSliderOutput">100</output>
<input type="range" min="5" max="1000" value="100" step="5" oninput="d3.select('#iterationsSliderOutput').text(value); ITERATIONS=value;">
</label>
<br/>
<label title="Attribute used for coloring nodes">
@@ -221,11 +221,11 @@
<p>Select distance function:</p>
<div id="distance">
<input type="radio" name="distance" checked onclick="distanceFunction=calculateDistance"> General<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateEuclideanDistance"> Euclidean<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateManhattanDistance"> Manhattan<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateJaccardDissimilarity"> Jaccard<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateDiceDissimilarity"> Dice<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateCosineSimilarity"> Cosine<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateEuclideanDistance"> Euclidean (must be numbers only)<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateManhattanDistance"> Manhattan (not tested)<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateJaccardDissimilarity"> Jaccard (not tested)<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateDiceDissimilarity"> Dice (not tested)<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateCosineSimilarity"> Cosine (not tested)<br>
<input type="radio" name="distance" onclick="distanceFunction=calculateDistancePoker"> Poker Hands<br>
</div>
</div>
@@ -239,11 +239,11 @@
<script src="js/lib/jquery-3.1.1.js"></script>
<script src="js/lib/intercom.js"></script>
<script src="../build/d3-spring-model.js"></script>
<script src="js/src/example-papaparsing.js"></script>
<script src="js/src/example-papaparsing/hybrid.js"></script>
<script src="js/src/example-papaparsing/linkForce.js"></script>
<script src="js/src/example-papaparsing/neighbourSampling.js"></script>
<script src="js/src/example-papaparsing/otherAlgo.js"></script>
<script src="js/example-papaparsing.js"></script>
<script src="js/algos/hybrid.js"></script>
<script src="js/algos/linkForce.js"></script>
<script src="js/algos/neighbourSampling.js"></script>
<script src="js/algos/otherAlgo.js"></script>
<script src="js/distances/distancePokerHands.js"></script>
<script src="js/distances/distance.js"></script>
<script src="js/distances/euclideanDistance.js"></script>

View File

@@ -1,10 +1,10 @@
/**
* Initialize the hybrid layout algorithm and start simulation.
*/
function startHybridSimulation() {
console.log("startHybridSimulation");
function startHybridSimulation () {
console.log('startHybridSimulation');
springForce = false;
d3.selectAll(".nodes").remove();
d3.selectAll('.nodes').remove();
manualStop = false;
simulation.stop();
p1 = performance.now();
@@ -16,33 +16,34 @@ function startHybridSimulation() {
let forceSample = d3.forceNeighbourSampling()
.neighbourSize(NEIGHBOUR_SIZE)
.sampleSize(SAMPLE_SIZE)
.stableVelocity(0)
.distance(distance)
.stableVelocity(0) // Change here
.distance(distance);
let forceFull = d3.forceNeighbourSampling()
.neighbourSize(FULL_NEIGHBOUR_SIZE)
.sampleSize(FULL_SAMPLE_SIZE)
.distance(distance)
.stableVelocity(0) // Change here
.distance(distance);
let hybridSimulation = d3.hybridSimulation(simulation, forceSample, forceFull)
.sampleIterations(ITERATIONS)
.fullIterations(FULL_ITERATIONS)
.numPivots(PIVOTS ? NUM_PIVOTS:-1)
.numPivots(PIVOTS ? NUM_PIVOTS : -1)
.interpFindTuneIts(INTERP_ENDING_ITS)
.interpDistanceFn(distance)
.on("sampleTick", ticked)
.on("fullTick", ticked)
.on("startInterp", startedFull)
.on("end", ended);
.on('sampleTick', ticked)
.on('fullTick', ticked)
.on('startInterp', startedFull)
.on('end', ended);
let sample = hybridSimulation.subSet();
addNodesToDOM(sample);
hybridSimulation.restart();
function startedFull() {
console.log("startedFull");
d3.selectAll(".nodes").remove();
function startedFull () {
console.log('startedFull');
d3.selectAll('.nodes').remove();
addNodesToDOM(nodes);
}
}

View File

@@ -1,8 +1,8 @@
/**
* Initialize the link force algorithm and start simulation.
*/
function startLinkSimulation() {
console.log("startLinkSimulation")
function startLinkSimulation () {
console.log('startLinkSimulation');
springForce = false;
alreadyRanIterations = 0;
manualStop = true;
@@ -11,27 +11,26 @@ function startLinkSimulation() {
let links = [], force;
if (tweakedVerOfLink) {
force = d3.forceLinkFullyConnected()
.distance(function (n, m) {
return distanceFunction(n, m, props, norm);
})
.stableVelocity(0.000001) //TODO
.onStableVelo(ended);
}
else {
for (i = nodes.length-1; i >= 1; i--) {
for (j = i-1; j >= 0; j--) {
force = d3.forceLinkCompleteGraph()
.distance(function (n, m) {
return distanceFunction(n, m, props, norm);
})
.stableVelocity(0) // Change here
.onStableVelo(ended);
} else {
for (i = nodes.length - 1; i >= 1; i--) {
for (j = i - 1; j >= 0; j--) {
links.push({
source: nodes[i],
target: nodes[j],
target: nodes[j]
});
}
}
force = d3.forceLink()
.distance(function (n) {
return distanceFunction(n.source, n.target, props, norm);
})
.links(links);
.distance(function (n) {
return distanceFunction(n.source, n.target, props, norm);
})
.links(links);
}
/* Add force
@@ -51,9 +50,9 @@ function startLinkSimulation() {
simulation
.alphaDecay(0)
.alpha(1)
.on("tick", ticked)
.on("end", ended)
//.velocityDecay(0.8)
.force(forceName,force)
.on('tick', ticked)
.on('end', ended)
// .velocityDecay(0.8)
.force(forceName, force)
.restart();
}

View File

@@ -0,0 +1,29 @@
/**
* Initialize the Chalmers' 1996 algorithm and start simulation.
*/
function startNeighbourSamplingSimulation () {
console.log('startNeighbourSamplingSimulation');
// springForce = true;
alreadyRanIterations = 0;
manualStop = true;
simulation.stop();
p1 = performance.now();
let force = d3.forceNeighbourSampling()
.neighbourSize(NEIGHBOUR_SIZE)
.sampleSize(SAMPLE_SIZE)
.distance(function (s, t) {
return distanceFunction(s, t, props, norm);
})
.stableVelocity(0) // Change here
.onStableVelo(ended);
simulation
.alphaDecay(0)
.alpha(1)
.on('tick', ticked)
.on('end', ended)
.force(forceName, force);
// Restart the simulation.
simulation.restart();
}

View File

@@ -1,7 +1,7 @@
/**
* Initialize the t-SNE algorithm and start simulation.
*/
function starttSNE() {
function starttSNE () {
springForce = false;
simulation.stop();
p1 = performance.now();
@@ -25,20 +25,20 @@ function starttSNE() {
/**
* Initialize the Barnes-Hut algorithm and start simulation.
*/
function startBarnesHutSimulation() {
console.log("startBarnesHutSimulation")
function startBarnesHutSimulation () {
console.log('startBarnesHutSimulation');
alreadyRanIterations = 0;
manualStop = false;
springForce = false;
p1 = performance.now();
simulation.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.on("tick", ticked)
.on("end", ended)
.force(forceName, d3.forceBarnesHut()
// The distance function that will be used to calculate distances
// between nodes.
.distance(function(s, t) { return distanceFunction(s, t, props, norm); }));
.on('tick', ticked)
.on('end', ended)
.force(forceName, d3.forceBarnesHut()
// The distance function that will be used to calculate distances
// between nodes.
.distance(function (s, t) { return distanceFunction(s, t, props, norm); }));
// Restart the simulation.
simulation.alpha(1).restart();
}

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateCosineSimilarity(source, target, properties, normArgs) {
function calculateCosineSimilarity (source, target, properties, normArgs) {
var numerator = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];
@@ -26,7 +26,7 @@ function calculateCosineSimilarity(source, target, properties, normArgs) {
return Math.abs(numerator / denominator);
}
function squareRooted(node, properties, normArgs) {
function squareRooted (node, properties, normArgs) {
var sum = 0.0;
for (var i = 0, s; i < properties.length; i++) {

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateDiceDissimilarity(source, target, properties, normArgs) {
function calculateDiceDissimilarity (source, target, properties, normArgs) {
var notShared = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -6,23 +6,23 @@
* @param {object} normArgs - the normalization arguments.
* @return {number} the distance between source and target nodes.
*/
function calculateDistance(source, target, properties, normArgs) {
function calculateDistance (source, target, properties, normArgs) {
var val1 = 0.0, val2 = 0.0,
sumDiff = 0.0,
ordDiff = 1.0,
ORD_FACTOR = 0.75,
cols = 0,
average = normArgs.avg,
sigma = normArgs.sig,
st_dev = normArgs.st_d;
sumDiff = 0.0,
ordDiff = 1.0,
ORD_FACTOR = 0.75,
cols = 0,
average = normArgs.avg,
sigma = normArgs.sig,
st_dev = normArgs.st_d;
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (source.hasOwnProperty(property) && target.hasOwnProperty(property)
&& property.toLowerCase() !== "index" ) {
if (source.hasOwnProperty(property) && target.hasOwnProperty(property) &&
property.toLowerCase() !== 'index' && property.toLowerCase() !== 'type') {
var s = source[property],
t = target[property];
t = target[property];
// Comparing Floats and Integers
if ((isNumeric(s) && isNumeric(t))) {
@@ -32,7 +32,7 @@ function calculateDistance(source, target, properties, normArgs) {
val1 = (val1 - average[i]) / (st_dev[i] * sigma[i]);
val2 = (val2 - average[i]) / (st_dev[i] * sigma[i]);
}
sumDiff += (val1-val2) * (val1-val2);
sumDiff += (val1 - val2) * (val1 - val2);
cols++;
// Comparing strings
} else if (/[a-zA-Z]/.test(s) && /[a-zA-Z]/.test(t) && s === t) {
@@ -42,9 +42,8 @@ function calculateDistance(source, target, properties, normArgs) {
// Comparing Dates
var parsedDateS = Date.parse(s);
var parsedDateT = Date.parse(t);
if (isNaN(s) && !isNaN(parsedDateS)
&& isNaN(t) && !isNaN(parsedDateT)) {
if (isNaN(s) && !isNaN(parsedDateS) &&
isNaN(t) && !isNaN(parsedDateT)) {
val1 = parsedDateS.valueOf(),
val2 = parsedDateT.valueOf();
@@ -52,7 +51,7 @@ function calculateDistance(source, target, properties, normArgs) {
val1 = (val1 - average[i]) / (st_dev[i] * sigma[i]);
val2 = (val2 - average[i]) / (st_dev[i] * sigma[i]);
}
sumDiff += (val1-val2) * (val1-val2);
sumDiff += (val1 - val2) * (val1 - val2);
cols++;
}
}
@@ -62,9 +61,9 @@ function calculateDistance(source, target, properties, normArgs) {
sumDiff *= ordDiff;
if (cols > 0) {
sumDiff *= properties.length/cols;
sumDiff *= properties.length / cols;
}
//console.log(sumDiff);
// console.log(sumDiff);
return sumDiff;
}

View File

@@ -6,33 +6,33 @@
* @param {node} target
* @return {number} the distance between source and target nodes.
*/
function calculateDistancePoker(source, target) {
function calculateDistancePoker (source, target) {
var sumDiff = 0.0,
ordDiff = 1.0,
ORD_FACTOR = 1.5,
cards = ["C1", "C2", "C3", "C4", "C5"],
cols = 0;
ordDiff = 1.0,
ORD_FACTOR = 1.5,
cards = ['C1', 'C2', 'C3', 'C4', 'C5'],
cols = 0;
// Iterate through cards
for (var i = 0; i < cards.length; i++) {
card = cards[i];
if (source.hasOwnProperty(card) && target.hasOwnProperty(card)) {
var s = parseInt(source[card]),
t = parseInt(target[card]);
t = parseInt(target[card]);
// Calculate the squared difference.
sumDiff += (s-t) * (s-t);
sumDiff += (s - t) * (s - t);
}
}
// Class of poker hands describes the similarities the best
// so give it more priority than checking the differences between cards.
if (source.hasOwnProperty("CLASS") && target.hasOwnProperty("CLASS")) {
var s = parseInt(source["CLASS"]),
t = parseInt(target["CLASS"]);
if (source.hasOwnProperty('CLASS') && target.hasOwnProperty('CLASS')) {
var s = parseInt(source['CLASS']),
t = parseInt(target['CLASS']);
// If classes differ, then scale them by a factor.
if (s !== t) {
ordDiff *= (ORD_FACTOR * (Math.abs(s-t)))
ordDiff *= (ORD_FACTOR * (Math.abs(s - t)));
}
}
@@ -40,4 +40,4 @@ function calculateDistancePoker(source, target) {
sumDiff *= ordDiff;
return sumDiff;
}
}

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateEuclideanDistance(source, target, properties, normArgs) {
function calculateEuclideanDistance (source, target, properties, normArgs) {
var sumDiff = 0.0;
// console.log(normArgs);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday' && property.toLowerCase() !== 'type') {
var s = source[property],
t = target[property];

View File

@@ -5,7 +5,7 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateEuclideanDistanceTSNE(source, target, properties, normArgs) {
function calculateEuclideanDistanceTSNE (source, target, properties, normArgs) {
var dotProduct = 0.0,
sumX = 0.0,
sumY = 0.0;
@@ -15,7 +15,7 @@ function calculateEuclideanDistanceTSNE(source, target, properties, normArgs) {
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (source.hasOwnProperty(property) && target.hasOwnProperty(property) &&
property.toLowerCase() !== "class") {
property.toLowerCase() !== 'class') {
var s = source[property],
t = target[property];

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateJaccardDissimilarity(source, target, properties, normArgs) {
function calculateJaccardDissimilarity (source, target, properties, normArgs) {
var notShared = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -5,7 +5,7 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateManhattanDistance(source, target, properties, normArgs) {
function calculateManhattanDistance (source, target, properties, normArgs) {
var sum = 0.0,
cols = 0;
@@ -13,7 +13,7 @@ function calculateManhattanDistance(source, target, properties, normArgs) {
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -3,7 +3,7 @@
* @param {array} nodes
* @return {object} that contains the normalization parameters.
*/
function calculateNormalization(nodes) {
function calculateNormalization (nodes) {
var STANDARD_DEV = 2.0,
properties = Object.keys(nodes[0]),
sums = calculateSums(nodes, properties),
@@ -23,10 +23,8 @@ function calculateNormalization(nodes) {
};
}
function standardDevation(nodes, properties, avg) {
var stDev = new Array(properties.length).fill(0)
function standardDevation (nodes, properties, avg) {
var stDev = new Array(properties.length).fill(0);
for (var i = 0; i < properties.length; i++) {
var sum = 0;
@@ -48,11 +46,10 @@ function standardDevation(nodes, properties, avg) {
sum += Math.pow(val - propAvg, 2);
});
stDev[i] = Math.sqrt(sum/nodes.length);
stDev[i] = Math.sqrt(sum / nodes.length);
}
return stDev;
return stDev;
}
// Calculate the sum of values and the squared sum
@@ -63,7 +60,7 @@ function standardDevation(nodes, properties, avg) {
* @return {object} that contains arrays with sum of values
* and the squared sums.
*/
function calculateSums(nodes, properties) {
function calculateSums (nodes, properties) {
var sumOfValues = new Array(properties.length).fill(0),
sumOfSquares = new Array(properties.length).fill(0);
@@ -90,4 +87,4 @@ function calculateSums(nodes, properties) {
sumOfVal: sumOfValues,
sumOfSq: sumOfSquares
};
}
}

View File

@@ -3,6 +3,6 @@
* @param {object} n - object to check.
* @return {Boolean} true, if it is a number, false otherwise.
*/
function isNumeric(n) {
function isNumeric (n) {
return !isNaN(parseFloat(n)) && isFinite(n);
}
}

View File

@@ -1,425 +1,400 @@
// Get the width and heigh of the SVG element.
var width = +document.getElementById('svg').clientWidth,
height = +document.getElementById('svg').clientHeight;
var svg = d3.select("svg")
.call(d3.zoom().scaleExtent([0.0001, 1000000]).on("zoom", function () {
svg.attr("transform", d3.event.transform);
}))
.append("g");
var div = d3.select("body").append("div")
.attr("class", "tooltip")
.style("opacity", 0);
var brush = d3.brush()
.extent([[-9999999, -9999999], [9999999, 9999999]])
.on("end", brushEnded);
svg.append("g")
.attr("class", "brush")
.call(brush);
var intercom = Intercom.getInstance();
intercom.on("select", unSelectNodes);
var nodes, // as in Data points
node, // as in SVG object that have all small circles on screen
props,
norm,
p1 = 0,
p2 = 0,
size,
distanceFunction,
simulation,
velocities = [],
rendering = true, // Rendering during the execution.
forceName = "forces",
springForce = false,
tooltipWidth = 0,
fileName = "",
selectedData,
clickedIndex = -1,
paused = false,
alreadyRanIterations,
tweakedVerOfLink,
manualStop = false;
// Default parameters
var MULTIPLIER = 50,
PERPLEXITY = 30,
LEARNING_RATE = 10,
NEIGHBOUR_SIZE = 10,
SAMPLE_SIZE = 10,
PIVOTS = false,
NUM_PIVOTS = 3,
ITERATIONS = 300,
FULL_ITERATIONS = 20,
NODE_SIZE = 10,
COLOR_ATTRIBUTE = "",
FULL_NEIGHBOUR_SIZE = 10,
FULL_SAMPLE_SIZE = 10,
INTERP_ENDING_ITS = 20;
// Create a color scheme for a range of numbers.
var color = d3.scaleOrdinal(d3.schemeCategory10);
$(document).ready(function() {
distanceFunction = calculateDistance;
d3.select('#startSimulation').on('click', startHybridSimulation);
$("#HLParameters").show();
});
/**
* Parse the data from the provided csv file using Papa Parse library
* @param {file} evt - csv file.
*/
function parseFile(evt) {
// Clear the previous nodes
d3.selectAll(".nodes").remove();
springForce = false;
fileName = evt.target.files[0].name;
Papa.parse(evt.target.files[0], {
header: true,
dynamicTyping: true,
skipEmptyLines: true,
complete: function (results) {
processData(results.data, results.error);
}
});
}
/**
* Process the data and pass it into D3 force simulation.
* @param {array} data
* @param {object} error
*/
function processData(data, error) {
if (error) throw error.message;
nodes = data;
size = nodes.length;
simulation = d3.forceSimulation();
// Calculate normalization arguments and get the list of
// properties of the nodes.
norm = calculateNormalization(nodes); // Used with distance fn
props = Object.keys(nodes[0]); // Properties to consider by distance fn
COLOR_ATTRIBUTE = props[props.length-1];
var opts = document.getElementById('color_attr').options;
props.forEach(function (d) {
opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE) ? true : false));
});
opts.selectedIndex = props.length-1;
//props.pop(); //Hide Iris index / last column from distance function
//Put the nodes in random starting positions
//TODO Change this back
nodes.forEach(function (d) {
d.x = 0;
d.y = 0;
});
/*
nodes.forEach(function (d) {
d.x = (Math.random()-0.5) * 100000;
d.y = (Math.random()-0.5) * 100000;
});*/
addNodesToDOM(nodes);
// Pass the nodes to the D3 force simulation.
simulation
.nodes(nodes)
.stop();
ticked();
};
function addNodesToDOM(data) {
node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
.data(data)
.enter().append("circle")
.attr("r", NODE_SIZE)
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE]);
})
.on("mouseover", function (d) {
div.transition()
.duration(200)
.style("opacity", .9);
div.html(formatTooltip(d))
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - (15 * props.length)) + "px")
.style("width", (6 * tooltipWidth) + "px")
.style("height", (14 * props.length) + "px");
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on("mouseout", function (d) {
div.transition()
.duration(500)
.style("opacity", 0);
node.attr("opacity", 1);
})
.on("click", function (d) {
console.log("click", clickedIndex);
if (clickedIndex !== d.index) {
if (springForce) {
highlightNeighbours(Array.from(simulation.force(forceName).nodeNeighbours(d.index).keys()));
clickedIndex = d.index;
}
} else {
node.attr("r", NODE_SIZE).attr("stroke-width", 0);
clickedIndex = -1;
}
});
if (selectedData)
unSelectNodes(selectedData);
}
function ticked() {
//console.log("ticked");
alreadyRanIterations++;
// If rendering is selected, then draw at every iteration.
if (rendering === true) {
node // Each sub-circle in the SVG, update cx and cy
.attr("cx", function (d) {
return d.x*MULTIPLIER;
})
.attr("cy", function (d) {
return d.y*MULTIPLIER;
});
}
// Emit the distribution data to allow the drawing of the bar graph
if (springForce) {
intercom.emit("passedData", simulation.force(forceName).distributionData());
}
if(manualStop && alreadyRanIterations == ITERATIONS) {
ended();
}
}
function ended() {
simulation.stop();
simulation.force(forceName, null);
console.log("ended");
if (rendering !== true) { // Never drawn anything before? Now it's time.
node
.attr("cx", function (d) {
return d.x*MULTIPLIER;
})
.attr("cy", function (d) {
return d.y*MULTIPLIER;
});
}
if (p1 !== 0) {
// Performance time measurement
p2 = performance.now();
console.log("Execution time: " + (p2 - p1));
// Do not calculate stress for data sets bigger than 100 000.
// if (nodes.length <= 100000) {
// console.log("Stress: ", simulation.force(forceName).stress());
// }
// console.log(simulation.force(forceName).nodeNeighbours());
p1 = 0;
p2 = 0;
}
}
function brushEnded() {
var s = d3.event.selection,
results = [];
if (s) {
var x0 = s[0][0] - width / 2,
y0 = s[0][1] - height / 2,
x1 = s[1][0] - width / 2,
y1 = s[1][1] - height / 2;
if (nodes) {
var sel = node.filter(function (d) {
if (d.x > x0 && d.x < x1 && d.y > y0 && d.y < y1) {
return true;
}
return false;
}).data();
results = sel.map(function (a) { return a.index; });
}
intercom.emit("select", { name: fileName, indices: results });
d3.select(".brush").call(brush.move, null);
}
}
/**
* Format the tooltip for the data
* @param {*} node
*/
function formatTooltip(node) {
var textString = "",
temp = "";
tooltipWidth = 0;
props.forEach(function (element) {
temp = element + ": " + node[element] + "<br/>";
textString += temp;
if (temp.length > tooltipWidth) {
tooltipWidth = temp.length;
}
});
return textString;
}
/**
* Halt the execution.
*/
function stopSimulation() {
console.log("stopSimulation");
simulation.stop();
if (typeof hybridSimulation !== 'undefined') {
hybridSimulation.stop();
}
}
/**
* Calculate the average values of the array.
* @param {array} array
* @return {number} the mean of the array.
*/
function getAverage(array) {
console.log("getAverage", array);
var total = 0;
for (var i = 0; i < array.length; i++) {
total += array[i];
}
return total / array.length;
}
/**
* Deselect the nodes to match the selection from other window.
* @param {*} data
*/
function unSelectNodes(data) {
selectedData = data;
if (fileName === data.name && nodes) {
node
.classed("notSelected", function (d) {
if (data.indices.indexOf(d.index) < 0) {
return true;
}
return false;
});
}
}
/**
* Highlight the neighbours for neighbour and sampling algorithm
* @param {*} indices
*/
function highlightNeighbours(indices) {
node
.attr("r", function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 2;
}
return NODE_SIZE;
})
.attr("stroke-width", function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 0.2 + "px";
}
return "0px";
})
.attr("stroke", "white");
}
/**
* Highlight all the nodes with the same class on hover
* @param {*} highlighValue
*/
function highlightOnHover(highlighValue) {
node.attr("opacity", function (d) {
return (highlighValue === d[COLOR_ATTRIBUTE]) ? 1 : 0.3;
});
}
/**
* Color the nodes according to given attribute.
*/
function colorToAttribute() {
node.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE])
});
}
/**
* Update the distance range.
function updateDistanceRange() {
if (springForce) {
simulation.force(forceName).distanceRange(SELECTED_DISTANCE);
}
}
/**
* Implemented pause/resume functionality
*/
function pauseUnPause() {
if (simulation) {
if (paused) {
simulation.force(forceName);
simulation.restart();
d3.select("#pauseButton").text("Pause");
paused = false;
} else {
simulation.stop();
d3.select("#pauseButton").text("Resume");
paused = true;
}
}
}
/**
* Average distances for each node.
* @param {*} dataNodes
* @param {*} properties
* @param {*} normalization
function calculateAverageDistance(dataNodes, properties, normalization) {
var sum = 0,
n = nodes.length;
for (var i = 0; i < n; i++) {
var sumNode = 0;
for (var j = 0; j < n; j++) {
if (i !== j) {
sumNode += distanceFunction(nodes[i], nodes[j], properties, normalization);
// console.log(sumNode);
}
}
sum += sumNode / (n - 1);
}
return sum / n;
}*/
// Get the width and heigh of the SVG element.
var width = +document.getElementById('svg').clientWidth,
height = +document.getElementById('svg').clientHeight;
var svg = d3.select('svg')
.call(d3.zoom().scaleExtent([0.0001, 1000000]).on('zoom', function () {
svg.attr('transform', d3.event.transform);
}))
.append('g');
var div = d3.select('body').append('div')
.attr('class', 'tooltip')
.style('opacity', 0);
var brush = d3.brush()
.extent([[-9999999, -9999999], [9999999, 9999999]])
.on('end', brushEnded);
svg.append('g')
.attr('class', 'brush')
.call(brush);
// var intercom = Intercom.getInstance();
// intercom.on("select", unSelectNodes);
var nodes, // as in Data points
node, // as in SVG object that have all small circles on screen
props,
norm,
p1 = 0,
p2 = 0,
size,
distanceFunction,
simulation,
velocities = [],
rendering = true, // Rendering during the execution.
forceName = 'forces',
springForce = false,
tooltipWidth = 0,
fileName = '',
selectedData,
clickedIndex = -1,
paused = false,
alreadyRanIterations,
tweakedVerOfLink,
manualStop = false;
// Default parameters
var MULTIPLIER = 50,
PERPLEXITY = 30,
LEARNING_RATE = 10,
NEIGHBOUR_SIZE = 10,
SAMPLE_SIZE = 10,
PIVOTS = false,
NUM_PIVOTS = 3,
ITERATIONS = 100,
FULL_ITERATIONS = 20,
NODE_SIZE = 10,
COLOR_ATTRIBUTE = '',
FULL_NEIGHBOUR_SIZE = 10,
FULL_SAMPLE_SIZE = 10,
INTERP_ENDING_ITS = 20;
// Create a color scheme for a range of numbers.
var color = d3.scaleOrdinal(d3.schemeCategory10);
$(document).ready(function () {
distanceFunction = calculateDistance;
d3.select('#startSimulation').on('click', startHybridSimulation);
$('#HLParameters').show();
});
/**
* Parse the data from the provided csv file using Papa Parse library
* @param {file} evt - csv file.
*/
function parseFile (evt) {
// Clear the previous nodes
d3.selectAll('.nodes').remove();
springForce = false;
fileName = evt.target.files[0].name;
Papa.parse(evt.target.files[0], {
header: true,
dynamicTyping: true,
skipEmptyLines: true,
complete: function (results) {
processData(results.data, results.error);
}
});
}
/**
* Process the data and pass it into D3 force simulation.
* @param {array} data
* @param {object} error
*/
function processData (data, error) {
if (error) throw error.message;
nodes = data;
size = nodes.length;
simulation = d3.forceSimulation();
// Calculate normalization parameters for distance fns
norm = calculateNormalization(nodes);
props = Object.keys(nodes[0]); // Properties to consider by distance fn
COLOR_ATTRIBUTE = props[props.length - 1];
var opts = document.getElementById('color_attr').options;
props.forEach(function (d) {
opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE)));
});
opts.selectedIndex = props.length - 1;
// props.pop(); //Hide Iris index / last column from the distance function
// Put the nodes at (0,0)
nodes.forEach(function (d) {
d.x = 0;
d.y = 0;
});
addNodesToDOM(nodes);
// Pass the nodes to the D3 force simulation.
simulation
.nodes(nodes)
.stop();
ticked();
};
function addNodesToDOM (data) {
node = svg.append('g')
.attr('class', 'nodes')
.selectAll('circle')
.data(data)
.enter().append('circle')
.attr('r', NODE_SIZE)
.attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')')
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr('fill', function (d) {
return color(d[COLOR_ATTRIBUTE]);
})
.on('mouseover', function (d) {
div.transition()
.duration(200)
.style('opacity', 0.9);
div.html(formatTooltip(d))
.style('left', (d3.event.pageX) + 'px')
.style('top', (d3.event.pageY - (15 * props.length)) + 'px')
.style('width', (6 * tooltipWidth) + 'px')
.style('height', (14 * props.length) + 'px');
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on('mouseout', function (d) {
div.transition()
.duration(500)
.style('opacity', 0);
node.attr('opacity', 1);
})
.on('click', function (d) {
console.log('click', clickedIndex);
if (clickedIndex !== d.index) {
if (springForce) {
highlightNeighbours(Array.from(simulation.force(forceName).nodeNeighbours(d.index).keys()));
clickedIndex = d.index;
}
} else {
node.attr('r', NODE_SIZE).attr('stroke-width', 0);
clickedIndex = -1;
}
});
if (selectedData) { unSelectNodes(selectedData); }
}
function ticked () {
alreadyRanIterations++;
// If rendering is selected, then draw at every iteration.
if (rendering === true) {
node // Each sub-circle in the SVG, update cx and cy
.attr('cx', function (d) {
return d.x * MULTIPLIER;
})
.attr('cy', function (d) {
return d.y * MULTIPLIER;
});
}
// Legacy: Emit the distribution data to allow the drawing of the bar graph
// if (springForce) {
// intercom.emit("passedData", simulation.force(forceName).distributionData());
// }
if (manualStop && alreadyRanIterations === ITERATIONS) {
ended();
}
}
function ended () {
simulation.stop();
simulation.force(forceName, null);
if (rendering !== true) { // Never drawn anything before? Now it's time.
node
.attr('cx', function (d) {
return d.x * MULTIPLIER;
})
.attr('cy', function (d) {
return d.y * MULTIPLIER;
});
}
if (p1 !== 0) {
// Performance time measurement
p2 = performance.now();
console.log('Execution time: ' + (p2 - p1));
p1 = 0;
p2 = 0;
}
}
function brushEnded () {
var s = d3.event.selection,
results = [];
if (s) {
var x0 = s[0][0] - width / 2,
y0 = s[0][1] - height / 2,
x1 = s[1][0] - width / 2,
y1 = s[1][1] - height / 2;
if (nodes) {
var sel = node.filter(function (d) {
if (d.x > x0 && d.x < x1 && d.y > y0 && d.y < y1) {
return true;
}
return false;
}).data();
results = sel.map(function (a) { return a.index; });
}
// intercom.emit("select", { name: fileName, indices: results });
d3.select('.brush').call(brush.move, null);
}
}
/**
* Format the tooltip for the data
* @param {*} node
*/
function formatTooltip (node) {
var textString = '',
temp = '';
tooltipWidth = 0;
props.forEach(function (element) {
temp = element + ': ' + node[element] + '<br/>';
textString += temp;
if (temp.length > tooltipWidth) {
tooltipWidth = temp.length;
}
});
return textString;
}
/**
* Halt the execution.
*/
function stopSimulation () {
simulation.stop();
if (typeof hybridSimulation !== 'undefined') {
hybridSimulation.stop();
}
}
/**
* Calculate the average values of the array.
* @param {array} array
* @return {number} the mean of the array.
*/
function getAverage (array) {
console.log('getAverage', array);
var total = 0;
for (var i = 0; i < array.length; i++) {
total += array[i];
}
return total / array.length;
}
/**
* Deselect the nodes to match the selection from other window.
* @param {*} data
*/
function unSelectNodes (data) {
selectedData = data;
if (fileName === data.name && nodes) {
node
.classed('notSelected', function (d) {
if (data.indices.indexOf(d.index) < 0) {
return true;
}
return false;
});
}
}
/**
* Highlight the neighbours for neighbour and sampling algorithm
* @param {*} indices
*/
function highlightNeighbours (indices) {
node
.attr('r', function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 2;
}
return NODE_SIZE;
})
.attr('stroke-width', function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 0.2 + 'px';
}
return '0px';
})
.attr('stroke', 'white');
}
/**
* Highlight all the nodes with the same class on hover
* @param {*} highlighValue
*/
function highlightOnHover (highlighValue) {
node.attr('opacity', function (d) {
return (highlighValue === d[COLOR_ATTRIBUTE]) ? 1 : 0.3;
});
}
/**
* Color the nodes according to given attribute.
*/
function colorToAttribute () {
node.attr('fill', function (d) {
return color(d[COLOR_ATTRIBUTE]);
});
}
/**
* Update the distance range.
function updateDistanceRange() {
if (springForce) {
simulation.force(forceName).distanceRange(SELECTED_DISTANCE);
}
}
/**
* Implemented pause/resume functionality
*/
function pauseUnPause () {
if (simulation) {
if (paused) {
simulation.force(forceName);
simulation.restart();
d3.select('#pauseButton').text('Pause');
paused = false;
} else {
simulation.stop();
d3.select('#pauseButton').text('Resume');
paused = true;
}
}
}
/**
* Average distances for each node.
* @param {*} dataNodes
* @param {*} properties
* @param {*} normalization
function calculateAverageDistance(dataNodes, properties, normalization) {
var sum = 0,
n = nodes.length;
for (var i = 0; i < n; i++) {
var sumNode = 0;
for (var j = 0; j < n; j++) {
if (i !== j) {
sumNode += distanceFunction(nodes[i], nodes[j], properties, normalization);
// console.log(sumNode);
}
}
sum += sumNode / (n - 1);
}
return sum / n;
} */

View File

@@ -1,29 +0,0 @@
/**
* Initialize the Chalmers' 1996 algorithm and start simulation.
*/
function startNeighbourSamplingSimulation() {
console.log("startNeighbourSamplingSimulation");
//springForce = true;
alreadyRanIterations = 0;
manualStop = true;
simulation.stop();
p1 = performance.now();
let force = d3.forceNeighbourSampling()
.neighbourSize(NEIGHBOUR_SIZE)
.sampleSize(SAMPLE_SIZE)
.distance(function (s, t) {
return distanceFunction(s, t, props, norm);
})
.stableVelocity(0.000001) //TODO
.onStableVelo(ended);
simulation
.alphaDecay(0)
.alpha(1)
.on("tick", ticked)
.on("end", ended)
.force(forceName, force);
// Restart the simulation.
simulation.restart();
}

View File

@@ -1,17 +1,17 @@
export {default as forceNeighbourSampling}
from "./src/neighbourSampling";
export { default as forceBarnesHut}
from "./src/barnesHut";
/*
export { default as tSNE}
from "./src/t-sne";
*/
export { default as forceLinkFullyConnected}
from "./src/link";
export { default as hybridSimulation}
from "./src/hybridSimulation";
export { getStress as calculateStress }
from "./src/stress";
export {default as forceNeighbourSampling}
from './src/neighbourSampling';
export {default as forceBarnesHut}
from './src/barnesHut';
export {default as tSNE}
from './src/t-sne';
export {default as forceLinkCompleteGraph}
from './src/link';
export {default as hybridSimulation}
from './src/hybridSimulation';
export {getStress as calculateStress}
from './src/stress';

View File

@@ -8,15 +8,23 @@
"d3-spring-model",
"force"
],
"license": "GPL-3.0-only",
"license": "MIT",
"main": "build/d3-spring-model.js",
"jsnext:main": "index",
"scripts": {
"lintcheck": "eslint index.js src",
"lintfix": "eslint index.js src --fix",
"build": "rm -rf build && mkdir build && rollup -g d3-force:d3,d3-dispatch:d3,d3-quadtree:d3,d3-collection:d3 -f umd -n d3 -o build/d3-spring-model.js -- index.js",
"minify": "node_modules/uglify-es/bin/uglifyjs build/d3-spring-model.js -c -m -o build/d3-spring-model.min.js",
"zip": "zip -j build/d3-spring-model.zip -- LICENSE README.md build/d3-spring-model.js build/d3-spring-model.min.js"
},
"devDependencies": {
"eslint": "4",
"eslint-config-standard": "^11.0.0",
"eslint-plugin-import": "^2.9.0",
"eslint-plugin-node": "^6.0.1",
"eslint-plugin-promise": "^3.7.0",
"eslint-plugin-standard": "^3.0.1",
"rollup": "0.36",
"uglify-js": "git+https://github.com/mishoo/UglifyJS2.git#harmony"
},

View File

@@ -1,158 +1,153 @@
import constant from "./constant";
import jiggle from "./jiggle";
import {x, y} from "./xy";
import {quadtree} from "d3-quadtree";
/**
* The refinement of the existing Barnes-Hut implementation in D3
* to fit the use case of the project. Previously the algorithm stored
* strength as internal node, now the random child is stored as internal
* node and the force calculations are done between the node and that internal
* object if they are sufficiently far away.
* The check to see if the nodes are far away was also changed to the one described in original Barnes-Hut paper.
* @return {force} calculated forces.
*/
export default function() {
var nodes,
node,
alpha,
distance = constant(300),
theta = 0.5;
/**
* Constructs a quadtree at every iteration and apply the forces by visiting
* each node in a tree.
* @param {number} _ - controls the stopping of the
* particle simulations.
*/
function force(_) {
var i, n = nodes.length, tree = quadtree(nodes, x, y).visitAfter(accumulate);
for (alpha = _, i = 0; i < n; ++i) {
node = nodes[i], tree.visit(apply);
}
}
/**
* Function used during the tree construction to fill out the nodes with
* correct data. Internal nodes acquire the random child while the leaf
* nodes accumulate forces from coincident quadrants.
* @param {quadrant} quad - node representing the quadrant in quadtree.
*/
function accumulate(quad) {
var q, d, children = [];
// For internal nodes, accumulate forces from child quadrants.
if (quad.length) {
for (var i = 0; i < 4; ++i) {
if ((q = quad[i]) && (d = q.data)) {
children.push(d);
}
}
// Choose a random child.
quad.data = children[Math.floor(Math.random() * children.length)];
quad.x = quad.data.x;
quad.y = quad.data.y;
}
// For leaf nodes, accumulate forces from coincident quadrants.
else {
q = quad;
q.x = q.data.x;
q.y = q.data.y;
}
}
/**
* Function that applies the forces for each node. If the objects are
* far away, the approximation is made. Otherwise, forces are calculated
* directly between the nodes.
* @param {quadrant} quad - node representing the quadrant in quadtree.
* @param {number} x1 - lower x bound of the node.
* @param {number} _ - lower y bound of the node.
* @param {number} x2 - upper x bound of the node.
* @return {boolean} - true if the approximation was applied.
*/
function apply(quad, x1, _, x2) {
var x = quad.data.x + quad.data.vx - node.x - node.vx,
y = quad.data.y + quad.data.vy - node.y - node.vy,
w = x2 - x1,
l = Math.sqrt(x * x + y * y);
// Apply the Barnes-Hut approximation if possible.
// Limit forces for very close nodes; randomize direction if coincident.
if (w / l < theta) {
if (x === 0) x = jiggle(), l += x * x;
if (y === 0) y = jiggle(), l += y * y;
if (quad.data) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l, y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
}
return true;
}
// Otherwise, process points directly.
else if (quad.length) return;
// Limit forces for very close nodes; randomize direction if coincident.
if (quad.data !== node || quad.next) {
if (x === 0) x = jiggle(), l += x * x;
if (y === 0) y = jiggle(), l += y * y;
}
do if (quad.data !== node) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l, y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
} while (quad = quad.next);
}
/**
* Calculates the stress. Basically, it computes the difference between
* high dimensional distance and real distance. The lower the stress is,
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress() {
var totalDiffSq = 0, totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i], target = nodes[j];
realDist = Math.hypot(target.x-source.x, target.y-source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist-highDist, 2);
totalHighDistSq += highDist * highDist;
}
}
}
return Math.sqrt(totalDiffSq/totalHighDistSq);
}
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function(_) {
nodes = _;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
};
force.theta = function(_) {
return arguments.length ? (theta = _, force) : theta;
};
force.stress = function() {
return getStress();
};
return force;
}
import constant from './constant';
import jiggle from './jiggle';
import {x, y} from './xy';
import {quadtree} from 'd3-quadtree';
/**
* The refinement of the existing Barnes-Hut implementation in D3
* to fit the use case of the project. Previously the algorithm stored
* strength as internal node, now the random child is stored as internal
* node and the force calculations are done between the node and that internal
* object if they are sufficiently far away.
* The check to see if the nodes are far away was also changed to the one described in original Barnes-Hut paper.
* @return {force} calculated forces.
*/
export default function () {
var nodes,
node,
alpha,
distance = constant(300),
theta = 0.5;
/**
* Constructs a quadtree at every iteration and apply the forces by visiting
* each node in a tree.
* @param {number} _ - controls the stopping of the
* particle simulations.
*/
function force (_) {
var i, n = nodes.length, tree = quadtree(nodes, x, y).visitAfter(accumulate);
for (alpha = _, i = 0; i < n; ++i) {
node = nodes[i]; tree.visit(apply);
}
}
/**
* Function used during the tree construction to fill out the nodes with
* correct data. Internal nodes acquire the random child while the leaf
* nodes accumulate forces from coincident quadrants.
* @param {quadrant} quad - node representing the quadrant in quadtree.
*/
function accumulate (quad) {
var q, d, children = [];
// For internal nodes, accumulate forces from child quadrants.
if (quad.length) {
for (var i = 0; i < 4; ++i) {
if ((q = quad[i]) && (d = q.data)) {
children.push(d);
}
}
// Choose a random child.
quad.data = children[Math.floor(Math.random() * children.length)];
quad.x = quad.data.x;
quad.y = quad.data.y;
} else { // For leaf nodes, accumulate forces from coincident quadrants.
q = quad;
q.x = q.data.x;
q.y = q.data.y;
}
}
/**
* Function that applies the forces for each node. If the objects are
* far away, the approximation is made. Otherwise, forces are calculated
* directly between the nodes.
* @param {quadrant} quad - node representing the quadrant in quadtree.
* @param {number} x1 - lower x bound of the node.
* @param {number} _ - lower y bound of the node.
* @param {number} x2 - upper x bound of the node.
* @return {boolean} - true if the approximation was applied.
*/
function apply (quad, x1, _, x2) {
var x = quad.data.x + quad.data.vx - node.x - node.vx,
y = quad.data.y + quad.data.vy - node.y - node.vy,
w = x2 - x1,
l = Math.sqrt(x * x + y * y);
// Apply the Barnes-Hut approximation if possible.
// Limit forces for very close nodes; randomize direction if coincident.
if (w / l < theta) {
if (x === 0) { x = jiggle(); l += x * x; }
if (y === 0) { y = jiggle(); l += y * y; }
if (quad.data) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l; y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
}
return true;
} else if (quad.length) return; // Otherwise, process points directly.
// Limit forces for very close nodes; randomize direction if coincident.
if (quad.data !== node || quad.next) {
if (x === 0) { x = jiggle(); l += x * x; }
if (y === 0) { y = jiggle(); l += y * y; }
}
do {
if (quad.data !== node) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l; y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
}
} while (quad = quad.next);
}
/**
* Calculates the stress. Basically, it computes the difference between
* high dimensional distance and real distance. The lower the stress is,
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress () {
var totalDiffSq = 0, totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i]; target = nodes[j];
realDist = Math.hypot(target.x - source.x, target.y - source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist - highDist, 2);
totalHighDistSq += highDist * highDist;
}
}
}
return Math.sqrt(totalDiffSq / totalHighDistSq);
}
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function (_) {
nodes = _;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.theta = function (_) {
return arguments.length ? (theta = _, force) : theta;
};
force.stress = function () {
return getStress();
};
return force;
}

View File

@@ -1,8 +1,8 @@
/**
* @return a constant defined by x.
*/
export default function(x) {
return function() {
export default function (x) {
return function () {
return x;
};
}

View File

@@ -1,196 +1,204 @@
import {dispatch} from "d3-dispatch";
import constant from "./constant";
import interpBruteForce from "./interpolation/interpBruteForce";
import interpolationPivots from "./interpolation/interpolationPivots";
import {takeSampleFrom} from "./interpolation/helpers";
/**
* An implementation of Chalmers, Morrison, and Ross' 2002 hybrid layout
* algorithm with an option to use the 2003 pivot-based near neighbour searching
* method.
* It performs the 1996 neighbour sampling spring simulation model, on a
* "sample set", sqrt(n) samples of the data.
* Other data points are then interpolated into the model.
* Finally, another spring simulation may be performed on the entire dataset to
* clean up the model.
* @param {object} sim - D3 Simulation object
* @param {object} forceS - Pre-configured D3 force object for the sample set.
The ending handler will be re-configured.
Neighbour sampling force is expected, but other D3
forces may also work.
* @param {object} forceF - Pre-configured D3 force object for the simultion ran
on the entire dataset at the end.
Neighbour sampling force is expected, but other D3
forces may also work.
The force should not have any ending condition.
*/
export default function (sim, forceS, forceF) {
var
SAMPLE_ITERATIONS = 300,
FULL_ITERATIONS = 20,
interpDistanceFn,
NUM_PIVOTS = 0,
INTERP_FINE_ITS = 20,
sample = [],
remainder = [],
simulation = sim,
forceSample = forceS,
forceFull = forceF,
event = d3.dispatch("sampleTick", "fullTick", "startInterp", "end"),
initAlready = false,
nodes,
alreadyRanIterations,
hybrid;
if(simulation != undefined) initSimulation();
if(forceS != undefined || forceF != undefined) initForces();
// Performed on first run
function initialize() {
initAlready = true;
console.log("Initializing Hybrid");
alreadyRanIterations = 0;
simulation
.on("tick", sampleTick)
.on("end", sampleEnded)
.nodes(sample)
.force("Sample force", forceSample);
console.log("Initialized Hybrid");
}
function initForces(){
if (forceSample.onStableVelo) {
forceSample.onStableVelo(sampleEnded);
}
// Set default value for interpDistanceFn if not been specified yet
if(interpDistanceFn === undefined) {
if(forceFull.distance == 'function')
interpDistanceFn = forceFull.distance();
else
interpDistanceFn = constant(300);
}
}
function initSimulation(){
nodes = simulation.nodes();
simulation
.stop()
.alphaDecay(0)
.alpha(1)
let sets = takeSampleFrom(nodes, Math.sqrt(nodes.length));
sample = sets.sample;
remainder = sets.remainder;
}
// Sample simulation ticked 1 frame, keep track of number of iterations here.
function sampleTick() {
event.call("sampleTick");
if(++alreadyRanIterations >= SAMPLE_ITERATIONS){
sampleEnded();
}
}
// Full simulation ticked 1 frame, keep track of number of iterations here.
function fullTick() {
event.call("fullTick");
if(++alreadyRanIterations >= FULL_ITERATIONS){
simulation.stop();
initAlready = false;
simulation.force("Full force", null);
event.call("end");
}
}
function sampleEnded() {
simulation.stop();
simulation.force("Sample force", null);
// Reset velocity of all nodes
for (let i=sample.length-1; i>=0; i--){
sample[i].vx=0;
sample[i].vy=0;
}
event.call("startInterp");
if (NUM_PIVOTS>=1) {
interpolationPivots(sample, remainder, NUM_PIVOTS, interpDistanceFn, INTERP_FINE_ITS);
} else {
interpBruteForce(sample, remainder, interpDistanceFn, INTERP_FINE_ITS);
}
event.call("fullTick");
alreadyRanIterations = 0;
simulation
.on("tick", null)
.on("end", null) // The ending condition should be iterations count
.nodes(nodes);
if (FULL_ITERATIONS<1 || forceF === undefined || forceF === null) {
event.call("end");
return;
}
simulation
.on("tick", fullTick)
.force("Full force", forceFull)
.restart();
}
return hybrid = {
restart: function () {
if(!initAlready) initialize();
simulation.restart();
return hybrid;
},
stop: function () {
simulation.stop();
return hybrid;
},
numPivots: function (_) {
return arguments.length ? (NUM_PIVOTS = +_, hybrid) : NUM_PIVOTS;
},
sampleIterations: function (_) {
return arguments.length ? (SAMPLE_ITERATIONS = +_, hybrid) : SAMPLE_ITERATIONS;
},
fullIterations: function (_) {
return arguments.length ? (FULL_ITERATIONS = +_, hybrid) : FULL_ITERATIONS;
},
interpFindTuneIts: function (_) {
return arguments.length ? (INTERP_FINE_ITS = +_, hybrid) : INTERP_FINE_ITS;
},
on: function (name, _) {
return arguments.length > 1 ? (event.on(name, _), hybrid) : event.on(name);
},
subSet: function (_) {
return arguments.length ? (sample = _, hybrid) : sample;
},
nonSubSet: function (_) {
return arguments.length ? (remainder = _, hybrid) : remainder;
},
interpDistanceFn: function (_) {
return arguments.length ? (interpDistanceFn = typeof _ === "function" ? _ : constant(+_), hybrid) : interpDistanceFn;
},
simulation: function (_) {
return arguments.length ? (toInit = true, simulation = _, hybrid) : simulation;
},
forceSample: function (_) {
return arguments.length ? (forceSample = _, initForces(), hybrid) : forceSample;
},
forceFull: function (_) {
return arguments.length ? (forceFull = _, initForces(), hybrid) : forceFull;
},
};
}
import {dispatch} from 'd3-dispatch';
import constant from './constant';
import interpBruteForce from './interpolation/interpBruteForce';
import interpolationPivots from './interpolation/interpolationPivots';
import {takeSampleFrom} from './interpolation/helpers';
/**
* An implementation of Chalmers, Morrison, and Ross' 2002 hybrid layout
* algorithm with an option to use the 2003 pivot-based near neighbour searching
* method.
* It performs the 1996 neighbour sampling spring simulation model, on a
* "sample set", sqrt(n) samples of the data.
* Other data points are then interpolated into the model.
* Finally, another spring simulation may be performed on the entire dataset to
* clean up the model.
* @param {object} sim - D3 Simulation object
* @param {object} forceS - Pre-configured D3 force object for the sample set.
The ending handler will be re-configured.
Neighbour sampling force is expected, but other D3
forces may also work.
* @param {object} forceF - Pre-configured D3 force object for the simultion ran
on the entire dataset at the end.
Neighbour sampling force is expected, but other D3
forces may also work.
The force should not have any ending condition.
*/
export default function (sim, forceS, forceF) {
var
SAMPLE_ITERATIONS = 300,
FULL_ITERATIONS = 20,
interpDistanceFn,
NUM_PIVOTS = 0,
INTERP_FINE_ITS = 20,
sample = [],
remainder = [],
simulation = sim,
forceSample = forceS,
forceFull = forceF,
event = dispatch('sampleTick', 'fullTick', 'startInterp', 'end'),
initAlready = false,
nodes,
alreadyRanIterations,
hybrid;
if (simulation !== undefined) initSimulation();
if (forceS !== undefined || forceF !== undefined) initForces();
// Performed on first run
function initialize () {
initAlready = true;
alreadyRanIterations = 0;
simulation
.on('tick', sampleTick)
.on('end', sampleEnded)
.nodes(sample)
.force('Sample force', forceSample);
console.log('Initialized Simulation for Hybrid');
}
function initForces () {
if (forceSample.onStableVelo) {
forceSample.onStableVelo(sampleEnded);
}
if (forceFull.onStableVelo) {
forceFull.onStableVelo(fullEnded);
}
// Set default value for interpDistanceFn if not been specified yet
if (interpDistanceFn === undefined) {
if (forceFull.distance === 'function') {
interpDistanceFn = forceFull.distance();
} else {
interpDistanceFn = constant(300);
}
}
}
function initSimulation () {
nodes = simulation.nodes();
simulation
.stop()
.alphaDecay(0)
.alpha(1);
let sets = takeSampleFrom(nodes, Math.sqrt(nodes.length));
sample = sets.sample;
remainder = sets.remainder;
}
// Sample simulation ticked 1 frame, keep track of number of iterations here.
function sampleTick () {
event.call('sampleTick');
if (alreadyRanIterations++ >= SAMPLE_ITERATIONS) {
sampleEnded();
}
}
// Full simulation ticked 1 frame, keep track of number of iterations here.
function fullTick () {
event.call('fullTick');
if (alreadyRanIterations++ >= FULL_ITERATIONS) {
fullEnded();
}
}
function fullEnded () {
simulation.stop();
initAlready = false;
simulation.force('Full force', null);
event.call('end');
}
function sampleEnded () {
simulation.stop();
simulation.force('Sample force', null);
// Reset velocity of all nodes
for (let i = sample.length - 1; i >= 0; i--) {
sample[i].vx = 0;
sample[i].vy = 0;
}
event.call('startInterp');
if (NUM_PIVOTS >= 1) {
interpolationPivots(sample, remainder, NUM_PIVOTS, interpDistanceFn, INTERP_FINE_ITS);
} else {
interpBruteForce(sample, remainder, interpDistanceFn, INTERP_FINE_ITS);
}
event.call('fullTick');
alreadyRanIterations = 0;
simulation
.on('tick', null)
.on('end', null) // The ending condition should be iterations count
.nodes(nodes);
if (FULL_ITERATIONS < 1 || forceF === undefined || forceF === null) {
event.call('end');
return;
}
simulation
.on('tick', fullTick)
.force('Full force', forceFull)
.restart();
}
return hybrid = {
restart: function () {
if (!initAlready) initialize();
simulation.restart();
return hybrid;
},
stop: function () {
simulation.stop();
return hybrid;
},
numPivots: function (_) {
return arguments.length ? (NUM_PIVOTS = +_, hybrid) : NUM_PIVOTS;
},
sampleIterations: function (_) {
return arguments.length ? (SAMPLE_ITERATIONS = +_, hybrid) : SAMPLE_ITERATIONS;
},
fullIterations: function (_) {
return arguments.length ? (FULL_ITERATIONS = +_, hybrid) : FULL_ITERATIONS;
},
interpFindTuneIts: function (_) {
return arguments.length ? (INTERP_FINE_ITS = +_, hybrid) : INTERP_FINE_ITS;
},
on: function (name, _) {
return arguments.length > 1 ? (event.on(name, _), hybrid) : event.on(name);
},
subSet: function (_) {
return arguments.length ? (sample = _, hybrid) : sample;
},
nonSubSet: function (_) {
return arguments.length ? (remainder = _, hybrid) : remainder;
},
interpDistanceFn: function (_) {
return arguments.length ? (interpDistanceFn = typeof _ === 'function' ? _ : constant(+_), hybrid) : interpDistanceFn;
},
simulation: function (_) {
return arguments.length ? (initAlready = false, simulation = _, hybrid) : simulation;
},
forceSample: function (_) {
return arguments.length ? (forceSample = _, initForces(), hybrid) : forceSample;
},
forceFull: function (_) {
return arguments.length ? (forceFull = _, initForces(), hybrid) : forceFull;
}
};
}

View File

@@ -8,26 +8,26 @@
sample is the list of selected objects while
remainder is the list of those unselected.
*/
export function takeSampleFrom(sourceList, amount) {
export function takeSampleFrom (sourceList, amount) {
let randElements = [],
max = sourceList.length,
swap = false;
max = sourceList.length,
swap = false;
if (amount >= max) {
return {sample: sourceList, remainder: {}};
}
// If picking more than half of the entire set, random to pick the remainder instead
if (amount > Math.ceil(max/2)){
if (amount > Math.ceil(max / 2)) {
amount = max - amount;
swap = true;
}
for (let i = 0; i < amount; ++i) {
let rand = sourceList[Math.floor((Math.random() * max))];
let rand = sourceList[Math.floor(Math.random() * max)];
// Re-random until suitable value is found.
while (randElements.includes(rand)) {
rand = sourceList[Math.floor((Math.random() * max))];
rand = sourceList[Math.floor(Math.random() * max)];
}
randElements.push(rand);
}
@@ -35,13 +35,12 @@ export function takeSampleFrom(sourceList, amount) {
return !randElements.includes(obj);
});
if(swap) {
if (swap) {
return {
sample: remainder,
remainder: randElements
};
}
else {
} else {
return {
sample: randElements,
remainder: remainder
@@ -58,14 +57,14 @@ export function takeSampleFrom(sourceList, amount) {
* @param {number} r
* @return {object} - coordinate {x: number, y: number} of the point
*/
export function pointOnCircle(h, k, angle, r) {
export function pointOnCircle (h, k, angle, r) {
return {
x: h + r*Math.cos(toRadians(angle)),
y: k + r*Math.sin(toRadians(angle))
x: h + r * Math.cos(toRadians(angle)),
y: k + r * Math.sin(toRadians(angle))
};
}
function toRadians(degrees) {
function toRadians (degrees) {
return degrees * (Math.PI / 180);
}
@@ -80,7 +79,7 @@ function toRadians(degrees) {
that of samples.
* @return {number} - Sum of distances differences
*/
export function sumDistError(node, samples, realDistances) {
export function sumDistError (node, samples, realDistances) {
let total = 0.0;
for (let i = 0; i < samples.length; i++) {
let sample = samples[i];

View File

@@ -1,48 +1,47 @@
import {pointOnCircle, takeSampleFrom} from "./helpers";
import {placeNearToNearestNeighbour} from "./interpCommon";
/**
* Perform interpolation where the "parent" node is found by brute-force.
* A "parent" of a node to be interpolated is a node whose position in 2D space
* is already known and have the least high-dimensional distance to the node in
* question.
* For each point to be interpolated:
* - Phase 1: find the "parent" by comparing high-d distance against every
points already plotted on the graph.
this is essentially a nearest neighbour finding problem.
* - Phase 2 and 3 are passed onto placeNearToNearestNeighbour
* @param {list} sampleSet - nodes already plotted on the 2D graph
* @param {list} remainderSet - nodes to be interpolated onto the graph
* @param {function} distanceFn - f(nodex, nodey) that calculate high-dimensional
* distance between 2 nodes
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function(sampleSet, remainderSet, distanceFn, endingIts) {
let
sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample,
sampleSubsetDistanceCache = [];
// For each datapoint "node" to be interpolated
for (let i = remainderSet.length-1; i>=0; i--) {
let
node = remainderSet[i],
nearestSample, minDist, sample, dist, index;
// For each datapoint "sample" in the sample set
for (let j = sampleSet.length-1; j>=0; j--) {
sample = sampleSet[j];
dist = distanceFn(node, sample);
if (nearestSample === undefined || dist < minDist) {
minDist = dist;
nearestSample = sample;
}
index = sampleSubset.indexOf(sample);
if (index !== -1)
sampleSubsetDistanceCache[index] = dist;
}
placeNearToNearestNeighbour(node, nearestSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);
}
}
import {takeSampleFrom} from './helpers';
import {placeNearToNearestNeighbour} from './interpCommon';
/**
* Perform interpolation where the "parent" node is found by brute-force.
* A "parent" of a node to be interpolated is a node whose position in 2D space
* is already known and have the least high-dimensional distance to the node in
* question.
* For each point to be interpolated:
* - Phase 1: find the "parent" by comparing high-d distance against every
points already plotted on the graph.
this is essentially a nearest neighbour finding problem.
* - Phase 2 and 3 are passed onto placeNearToNearestNeighbour
* @param {list} sampleSet - nodes already plotted on the 2D graph
* @param {list} remainderSet - nodes to be interpolated onto the graph
* @param {function} distanceFn - f(nodex, nodey) that calculate high-dimensional
* distance between 2 nodes
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function (sampleSet, remainderSet, distanceFn, endingIts) {
let
sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample,
sampleSubsetDistanceCache = [];
// For each datapoint "node" to be interpolated
for (let i = remainderSet.length - 1; i >= 0; i--) {
let
node = remainderSet[i],
nearestSample, minDist, sample, dist, index;
// For each datapoint "sample" in the sample set
for (let j = sampleSet.length - 1; j >= 0; j--) {
sample = sampleSet[j];
dist = distanceFn(node, sample);
if (nearestSample === undefined || dist < minDist) {
minDist = dist;
nearestSample = sample;
}
index = sampleSubset.indexOf(sample);
if (index !== -1) { sampleSubsetDistanceCache[index] = dist; }
}
placeNearToNearestNeighbour(node, nearestSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);
}
}

View File

@@ -1,5 +1,5 @@
import {pointOnCircle, sumDistError} from "./helpers";
import jiggle from "../jiggle";
import {pointOnCircle, sumDistError} from './helpers';
import jiggle from '../jiggle';
/**
* Phase 2 and 3 of each node to be interpolated.
@@ -24,9 +24,9 @@ import jiggle from "../jiggle";
index must correspond to sampleSubset
* @param {Integer} endingIts - Number of iterations for phase 3
*/
export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleSubset, realDistances, endingIts) {
export function placeNearToNearestNeighbour (node, nearNeighbour, radius, sampleSubset, realDistances, endingIts) {
let
sumDistErrorByAngle = function(angle){
sumDistErrorByAngle = function (angle) {
return sumDistError(pointOnCircle(nearNeighbour.x, nearNeighbour.y, angle, radius), sampleSubset, realDistances);
},
dist0 = sumDistErrorByAngle(0),
@@ -36,17 +36,11 @@ export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleS
lowBound = 0.0,
highBound = 0.0;
// Determine the closest quadrant
if (dist0 == dist180) {
if (dist90 > dist270)
lowBound = highBound = 270;
else
lowBound = highBound = 90;
} else if (dist90 == dist270) {
if (dist0 > dist180)
lowBound = highBound = 180;
else
lowBound = highBound = 0;
// Determine the closest quadrant
if (dist0 === dist180) {
if (dist90 > dist270) { lowBound = highBound = 270; } else { lowBound = highBound = 90; }
} else if (dist90 === dist270) {
if (dist0 > dist180) { lowBound = highBound = 180; } else { lowBound = highBound = 0; }
} else if (dist0 > dist180) {
if (dist90 > dist270) {
lowBound = 180;
@@ -55,39 +49,37 @@ export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleS
lowBound = 90;
highBound = 180;
}
} else if (dist90 > dist270) {
lowBound = 270;
highBound = 360;
} else {
if (dist90 > dist270) {
lowBound = 270;
highBound = 360;
} else {
lowBound = 0;
highBound = 90;
}
lowBound = 0;
highBound = 90;
}
// Determine the angle
let angle = binarySearchMin(lowBound, highBound,sumDistErrorByAngle);
let angle = binarySearchMin(lowBound, highBound, sumDistErrorByAngle);
let newPoint = pointOnCircle(nearNeighbour.x, nearNeighbour.y, angle, radius);
node.x = newPoint.x;
node.y = newPoint.y;
// Phase 3
let
multiplier = 1/sampleSubset.length,
multiplier = 1 / sampleSubset.length,
sumForces;
for (let i = 0; i < endingIts; i++) {
sumForces = sumForcesToSample(node, sampleSubset, realDistances);
node.x += sumForces.x*multiplier;
node.y += sumForces.y*multiplier;
node.x += sumForces.x * multiplier;
node.y += sumForces.y * multiplier;
}
}
function sumForcesToSample(node, samples, sampleCache) {
function sumForcesToSample (node, samples, sampleCache) {
let nodeVx = 0,
nodeVy = 0,
x, y, l, i, sample;
nodeVy = 0,
x, y, l, i, sample;
for (i = samples.length-1; i >=0 ; i--) {
for (i = samples.length - 1; i >= 0; i--) {
sample = samples[i];
// jiggle so l won't be zero and divide by zero error after this
@@ -95,7 +87,7 @@ function sumForcesToSample(node, samples, sampleCache) {
y = node.y - sample.y || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - sampleCache[i]) / l;
x *= l, y *= l;
x *= l; y *= l;
nodeVx -= x;
nodeVy -= y;
}
@@ -110,27 +102,27 @@ function sumForcesToSample(node, samples, sampleCache) {
* @param {function(x)} fn - function that takes in a number x and returns a number
* @return {integer} - an integer x where f(x) is minimum
*/
function binarySearchMin(lb, hb, fn) {
function binarySearchMin (lb, hb, fn) {
while (lb <= hb) {
if(lb === hb) return lb;
if (lb === hb) return lb;
if(hb-lb == 1) {
if (hb - lb === 1) {
if (fn(lb) >= fn(hb)) return hb;
else return lb;
}
let
range = hb-lb,
valLowerHalf = fn(lb + range/4),
valHigherHalf = fn(lb + range*3/4);
range = hb - lb,
valLowerHalf = fn(lb + range / 4),
valHigherHalf = fn(lb + range * 3 / 4);
if (valLowerHalf > valHigherHalf)
if (valLowerHalf > valHigherHalf) {
lb = Math.floor((lb + hb) / 2);
else if (valLowerHalf < valHigherHalf)
} else if (valLowerHalf < valHigherHalf) {
hb = Math.ceil((lb + hb) / 2);
else {
lb += Math.floor(range/4);
hb -= Math.ceil(range/4);
} else {
lb += Math.floor(range / 4);
hb -= Math.ceil(range / 4);
}
}
return -1;

View File

@@ -1,135 +1,136 @@
import {pointOnCircle, takeSampleFrom} from "./helpers";
import {placeNearToNearestNeighbour} from "./interpCommon";
/**
* Perform interpolation where the "parent" node is is estimated by pivot-based searching.
* - Pre-processing: assign random samples as pivots,
* put the others in each pivot's bucket.
* ie. a non-pivot sample X may be in
* - bucket 3 of pivot A,
* - bucket 1 of pivot B,
* - bucket 5 of pivot C,
* all at the same time
* For each point to be interpolated:
* - Phase 1: for each pivot: compare distance against the pivot
* compare against other points in the same bucket of that pivot
* note down the parent found
* this is essentially a near neighbour estimation problem.
* - Phase 2 and 3 are passed onto placeNearToNearestNeighbour
* @param {list} sampleSet - nodes already plotted on the 2D graph
* @param {list} remainderSet - nodes to be interpolated onto the graph
* @param {function} distanceFn - f(nodex, nodey) that calculate high-dimensional
* distance between 2 nodes
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIts) {
// Pivot based parent finding
let numBuckets = Math.floor(Math.sqrt(sampleSet.length));
let numNonPivots = sampleSet.length - numPivots;
let sets = takeSampleFrom(sampleSet, numPivots);
let pivots = sets.sample;
let nonPivotSamples = sets.remainder;
let pivotsBuckets = []; // [ For each Pivot:[For each bucket:[each point in bucket]] ]
for (let i = 0; i < numPivots; i++) {
pivotsBuckets[i] = [];
for (let j = 0; j < numBuckets; j++) {
pivotsBuckets[i][j] = [];
}
}
// Pre-calculate distance between each non-pivot sample to each pivot
// At the same time, determine the bucket width for each pivot based on furthest non-pivot sample
let distCache = []; // [ For each non-pivot sample:[For each Pivot: distance] ]
let bucketWidths = []; // [ For each Pivot: width of each bucket ]
for (let i = 0; i < nonPivotSamples.length; i++)
distCache[i] = [];
for (let j = 0; j < numPivots; j++) {
let pivot = pivots[j];
let maxDist = -1;
for (let i = 0; i < numNonPivots; i++) {
let sample = nonPivotSamples[i];
distCache[i][j] = distanceFn(pivot, sample);
if (distCache[i][j] > maxDist)
maxDist = distCache[i][j];
}
bucketWidths.push(maxDist / numBuckets);
}
// Put samples (pivot not included) into buckets
for (let j = 0; j < numPivots; j++) {
let bucketWidth = bucketWidths[j];
for (let i = 0; i < numNonPivots; i++) {
let sample = nonPivotSamples[i];
let bucketNumber = Math.floor(distCache[i][j] / bucketWidth);
if (bucketNumber >= numBuckets) {
bucketNumber = numBuckets - 1;
} else if (bucketNumber < 0) { // Should never be negative anyway
bucketNumber = 0;
}
pivotsBuckets[j][bucketNumber].push(sample);
}
}
// ---------------------------------------------------------------------
let sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample;
//Plot each of the remainder nodes
for (let i = remainderSet.length-1; i>=0; i--) {
let node = remainderSet[i];
let sampleSubsetDistanceCache = [],
minDist, nearSample;
// Pivot based parent search
for (let p = 0; p < numPivots; p++) {
let pivot = pivots[p];
let bucketWidth = bucketWidths[p];
let dist = distanceFn(node, pivot);
let index = sampleSubset.indexOf(pivot);
if (index !== -1) {
sampleSubsetDistanceCache[index] = dist;
}
if (minDist === undefined || dist < minDist){
minDist = dist;
nearSample = pivot;
}
let bucketNumber = Math.floor(dist / bucketWidth);
if (bucketNumber >= numBuckets) {
bucketNumber = numBuckets - 1;
} else if (bucketNumber < 0) { // Should never be negative anyway
bucketNumber = 0;
}
for (let j = pivotsBuckets[p][bucketNumber].length-1; j>=0; j--) {
let candidateNode = pivotsBuckets[p][bucketNumber][j];
let index = sampleSubset.indexOf(candidateNode);
if (index !== -1 && sampleSubsetDistanceCache[index] !== undefined)
dist = sampleSubsetDistanceCache[index]
else {
dist = distanceFn(candidateNode, node);
if (index !== -1)
sampleSubsetDistanceCache[index] = dist;
}
if (dist < minDist){
minDist = dist;
nearSample = candidateNode;
}
}
}
// Fill in holes in cache
for (let k = 0; k < sampleSubset.length; k++) {
if (sampleSubsetDistanceCache[k] === undefined)
sampleSubsetDistanceCache[k] = distanceFn(node, sampleSubset[k]);
}
placeNearToNearestNeighbour(node, nearSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);
}
}
import {takeSampleFrom} from './helpers';
import {placeNearToNearestNeighbour} from './interpCommon';
/**
* Perform interpolation where the "parent" node is is estimated by pivot-based searching.
* - Pre-processing: assign random samples as pivots,
* put the others in each pivot's bucket.
* ie. a non-pivot sample X may be in
* - bucket 3 of pivot A,
* - bucket 1 of pivot B,
* - bucket 5 of pivot C,
* all at the same time
* For each point to be interpolated:
* - Phase 1: for each pivot: compare distance against the pivot
* compare against other points in the same bucket of that pivot
* note down the parent found
* this is essentially a near neighbour estimation problem.
* - Phase 2 and 3 are passed onto placeNearToNearestNeighbour
* @param {list} sampleSet - nodes already plotted on the 2D graph
* @param {list} remainderSet - nodes to be interpolated onto the graph
* @param {function} distanceFn - f(nodex, nodey) that calculate high-dimensional
* distance between 2 nodes
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function (sampleSet, remainderSet, numPivots, distanceFn, endingIts) {
// Pivot based parent finding
let numBuckets = Math.floor(Math.sqrt(sampleSet.length));
let numNonPivots = sampleSet.length - numPivots;
let sets = takeSampleFrom(sampleSet, numPivots);
let pivots = sets.sample;
let nonPivotSamples = sets.remainder;
let pivotsBuckets = []; // [ For each Pivot:[For each bucket:[each point in bucket]] ]
for (let i = 0; i < numPivots; i++) {
pivotsBuckets[i] = [];
for (let j = 0; j < numBuckets; j++) {
pivotsBuckets[i][j] = [];
}
}
// Pre-calculate distance between each non-pivot sample to each pivot
// At the same time, determine the bucket width for each pivot based on furthest non-pivot sample
let distCache = []; // [ For each non-pivot sample:[For each Pivot: distance] ]
let bucketWidths = []; // [ For each Pivot: width of each bucket ]
for (let i = 0; i < nonPivotSamples.length; i++) {
distCache[i] = [];
}
for (let j = 0; j < numPivots; j++) {
let pivot = pivots[j];
let maxDist = -1;
for (let i = 0; i < numNonPivots; i++) {
let sample = nonPivotSamples[i];
distCache[i][j] = distanceFn(pivot, sample);
if (distCache[i][j] > maxDist) {
maxDist = distCache[i][j];
}
}
bucketWidths.push(maxDist / numBuckets);
}
// Put samples (pivot not included) into buckets
for (let j = 0; j < numPivots; j++) {
let bucketWidth = bucketWidths[j];
for (let i = 0; i < numNonPivots; i++) {
let sample = nonPivotSamples[i];
let bucketNumber = Math.floor(distCache[i][j] / bucketWidth);
if (bucketNumber >= numBuckets) {
bucketNumber = numBuckets - 1;
} else if (bucketNumber < 0) { // Should never be negative anyway
bucketNumber = 0;
}
pivotsBuckets[j][bucketNumber].push(sample);
}
}
// ---------------------------------------------------------------------
let sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample;
// Plot each of the remainder nodes
for (let i = remainderSet.length - 1; i >= 0; i--) {
let node = remainderSet[i];
let sampleSubsetDistanceCache = [],
minDist, nearSample;
// Pivot based parent search
for (let p = 0; p < numPivots; p++) {
let pivot = pivots[p];
let bucketWidth = bucketWidths[p];
let dist = distanceFn(node, pivot);
let index = sampleSubset.indexOf(pivot);
if (index !== -1) {
sampleSubsetDistanceCache[index] = dist;
}
if (minDist === undefined || dist < minDist) {
minDist = dist;
nearSample = pivot;
}
let bucketNumber = Math.floor(dist / bucketWidth);
if (bucketNumber >= numBuckets) {
bucketNumber = numBuckets - 1;
} else if (bucketNumber < 0) { // Should never be negative anyway
bucketNumber = 0;
}
for (let j = pivotsBuckets[p][bucketNumber].length - 1; j >= 0; j--) {
let candidateNode = pivotsBuckets[p][bucketNumber][j];
let index = sampleSubset.indexOf(candidateNode);
if (index !== -1 && sampleSubsetDistanceCache[index] !== undefined) {
dist = sampleSubsetDistanceCache[index];
} else {
dist = distanceFn(candidateNode, node);
if (index !== -1) { sampleSubsetDistanceCache[index] = dist; }
}
if (dist < minDist) {
minDist = dist;
nearSample = candidateNode;
}
}
}
// Fill in holes in cache
for (let k = 0; k < sampleSubset.length; k++) {
if (sampleSubsetDistanceCache[k] === undefined) {
sampleSubsetDistanceCache[k] = distanceFn(node, sampleSubset[k]);
}
}
placeNearToNearestNeighbour(node, nearSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);
}
}

View File

@@ -1,7 +1,7 @@
/**
* @return {number} a very small non-zero random number.
*/
export default function() {
export default function () {
let rand;
do {
rand = (Math.random() - 0.5) * 1e-6;

View File

@@ -1,107 +1,110 @@
import constant from "./constant";
import jiggle from "./jiggle";
/**
* Modified link force algorithm
* - simplify calculations for parameters locked for spring model
* - replace the use of links {} with loop. greatly reduce memory usage
* - removed other unused functions
* Alpha should be constant 1 for accurate simulation
*/
export default function() {
var dataSizeFactor,
distance = constant(30),
distances = [],
nodes,
stableVelocity = 0,
stableVeloHandler = null,
latestVelocityDiff = 0,
iterations = 1;
function force(alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler!==null && stableVelocity>=0) {
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
// Each iteration in a tick
for (var k = 0, source, target, i, j, x, y, l; k < iterations; ++k) {
// For each link
for (i = 1; i < n; i++) for (j = 0; j < i; j++) {
// jiggle so l won't be zero and divide by zero error after this
source = nodes[i];
target = nodes[j];
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - distances[i*(i-1)/2+j]) / l * dataSizeFactor * alpha;
x *= l, y *= l;
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler!==null && stableVelocity>=0) {
let velocityDiff = 0;
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx-node.oldvx, node.vy-node.oldvy));
}
velocityDiff /= n*(n-1);
latestVelocityDiff = velocityDiff;
if(velocityDiff<stableVelocity){
stableVeloHandler();
}
}
}
function initialize() {
if (!nodes) return;
// 0.5 to divide the force to two part for source and target node
dataSizeFactor = 0.5/(nodes.length-1);
initializeDistance();
}
function initializeDistance() {
if (!nodes) return;
for (let i = 1, n = nodes.length; i < n; i++) {
for (let j = 0; j < i; j++) {
distances.push(distance(nodes[i], nodes[j]));
}
}
}
force.initialize = function(_) {
nodes = _;
initialize();
};
force.iterations = function(_) {
return arguments.length ? (iterations = +_, force) : iterations;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance;
};
force.latestAccel = function () {
return latestVelocityDiff;
};
force.onStableVelo = function (_) {
return arguments.length ? (stableVeloHandler = _, force) : stableVeloHandler;
};
force.stableVelocity = function (_) {
return arguments.length ? (stableVelocity = _, force) : stableVelocity;
};
return force;
}
import constant from './constant';
import jiggle from './jiggle';
/**
* Modified link force algorithm
* - simplify calculations for parameters locked for spring model
* - replace the use of links {} with loop. greatly reduce memory usage
* - removed other unused functions
* Alpha should be constant 1 for accurate simulation
*/
export default function () {
var dataSizeFactor,
distance = constant(30),
distances = [],
nodes,
stableVelocity = 0,
stableVeloHandler = null,
latestVelocityDiff = 0,
iterations = 1;
function force (alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler !== null && stableVelocity >= 0) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
// Each iteration in a tick
for (var k = 0, source, target, i, j, x, y, l; k < iterations; ++k) {
// For each link
for (i = 1; i < n; i++) {
for (j = 0; j < i; j++) {
// jiggle so l won't be zero and divide by zero error after this
source = nodes[i];
target = nodes[j];
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - distances[i * (i - 1) / 2 + j]) / l * dataSizeFactor * alpha;
x *= l; y *= l;
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
}
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler !== null && stableVelocity >= 0) {
let velocityDiff = 0;
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx - node.oldvx, node.vy - node.oldvy));
}
velocityDiff /= n;
latestVelocityDiff = velocityDiff;
if (velocityDiff < stableVelocity) {
stableVeloHandler();
}
}
}
function initialize () {
if (!nodes) return;
// 0.5 to divide the force to two part for source and target node
dataSizeFactor = 0.5 / (nodes.length - 1);
initializeDistance();
}
function initializeDistance () {
if (!nodes) return;
for (let i = 1, n = nodes.length; i < n; i++) {
for (let j = 0; j < i; j++) {
distances.push(distance(nodes[i], nodes[j]));
}
}
}
force.initialize = function (_) {
nodes = _;
initialize();
};
force.iterations = function (_) {
return arguments.length ? (iterations = +_, force) : iterations;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), initializeDistance(), force) : distance;
};
force.latestAccel = function () {
return latestVelocityDiff;
};
force.onStableVelo = function (_) {
return arguments.length ? (stableVeloHandler = _, force) : stableVeloHandler;
};
force.stableVelocity = function (_) {
return arguments.length ? (stableVelocity = _, force) : stableVelocity;
};
return force;
}

View File

@@ -1,206 +1,203 @@
import constant from "./constant";
import jiggle from "./jiggle";
import {getStress} from "./stress";
/**
* An implementation of Chalmers' 1996 Neighbour and Sampling algorithm.
* It uses random sampling to find the most suited neighbours from the
* data set.
*/
function sortDistances(a, b) {
return b[1] - a[1];
}
export default function () {
var neighbours = [],
distance = constant(300),
nodes,
neighbourSize = 10,
sampleSize = 10,
stableVelocity = 0,
stableVeloHandler = null,
dataSizeFactor,
latestVelocityDiff = 0;
/**
* Apply spring forces at each simulation iteration.
* @param {number} alpha - multiplier for amount of force applied
*/
function force(alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler!==null && stableVelocity>=0) {
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
for (let i = n-1, node, samples; i>=0; i--) {
node = nodes[i];
samples = createRandomSamples(i);
for (let [neighbourID, highDDist] of neighbours[i]) {
setVelocity(node, nodes[neighbourID], highDDist, alpha);
}
for (let [sampleID, highDDist] of samples) {
setVelocity(node, nodes[sampleID], highDDist, alpha);
}
neighbours[i] = findNewNeighbours(neighbours[i], samples);
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler!==null && stableVelocity>=0) {
let velocityDiff = 0;
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx-node.oldvx, node.vy-node.oldvy));
}
velocityDiff /= n*(neighbourSize+sampleSize);
latestVelocityDiff = velocityDiff;
if(velocityDiff<stableVelocity){
stableVeloHandler();
}
}
}
/**
* Apply force to both source and target nodes.
* @param {number} source - source node object
* @param {number} target - target node object
* @param {number} dist - high dimensional distance between the two nodes
* @param {number} alpha - multiplier for the amount of force applied
*/
function setVelocity(source, target, dist, alpha) {
let x, y, l;
// jiggle so l won't be zero and divide by zero error after this
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - dist) / l * dataSizeFactor * alpha;
x *= l, y *= l;
// Set the calculated velocites for both nodes.
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
// Called on nodes change and added to a simulation
function initialize() {
if (!nodes) return;
// Initialize for each node some random neighbours.
for (let i = nodes.length-1; i>=0; i--) {
let neighbs = pickRandomNodesFor(i, [i], neighbourSize);
// Sort the neighbour set by the distances.
neighbours[i] = new Map(neighbs.sort(sortDistances));
}
initDataSizeFactor();
}
function initDataSizeFactor(){
dataSizeFactor = 0.5/(neighbourSize+sampleSize);
}
/**
* Generates an array of array[index, high-d distance to the node of index]
* where all indices are different and the size is as specified unless
* impossible (may be due to too large size requested)
* @param {number} index - index of a node to calculate distance against
* @param {array} exclude - indices of the nodes to ignore.
* @param {number} size - max number of elements in the map to return.
* @return {array}
*/
function pickRandomNodesFor(index, exclude, size) {
let randElements = [];
let max = nodes.length;
for (let i = 0; i < size; i++) {
// Stop when no new elements can be found.
if (randElements.length + exclude.length >= nodes.length) {
break;
}
let rand = Math.floor((Math.random() * max));
// Re-random until suitable value is found.
while (randElements.includes(rand) || exclude.includes(rand)) {
rand = Math.floor((Math.random() * max));
}
randElements.push(rand);
}
for(let i=randElements.length-1, rand; i>=0; i--){
rand = randElements[i];
randElements[i] = [rand, distance(nodes[index], nodes[rand])];
}
return randElements;
}
/**
* Generates a map {index: high-dimensional distance to the node of index}
* to be used as samples set for the node of the specified index.
* @param {number} index - index of the node to generate sample for
* @return {map}
*/
function createRandomSamples(index) {
// Ignore the current neighbours of the node and itself.
let exclude = [index];
exclude = exclude.concat(Array.from(neighbours[index].keys()));
return new Map(pickRandomNodesFor(index, exclude, sampleSize));
}
/**
* Compares the elements from sample set to the neighbour set and replaces the
* elements in the neighbour set if any better neighbours are found.
* @param {map} neighbours - map of neighbours
* @param {map} samples - map of samples
* @return {map} - new map of neighbours
*/
function findNewNeighbours(neighbours, samples) {
let combined = [...neighbours.entries()].concat([...samples.entries()]);
combined = combined.sort(sortDistances);
return new Map(combined.slice(0, neighbourSize));
}
// API for initializing the algorithm and setting parameters
force.initialize = function (_) {
nodes = _;
initialize();
};
force.neighbourSize = function (_) {
return arguments.length ? (neighbourSize = +_, initialize(), force) : neighbourSize;
};
force.neighbours = function () {
return neighbours;
};
force.sampleSize = function (_) {
return arguments.length ? (sampleSize = +_, initDataSizeFactor(), force) : sampleSize;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
};
force.latestAccel = function () {
return latestVelocityDiff;
};
force.onStableVelo = function (_) {
return arguments.length ? (stableVeloHandler = _, force) : stableVeloHandler;
};
force.stableVelocity = function (_) {
return arguments.length ? (stableVelocity = _, force) : stableVelocity;
};
return force;
}
import constant from './constant';
import jiggle from './jiggle';
/**
* An implementation of Chalmers' 1996 Neighbour and Sampling algorithm.
* It uses random sampling to find the most suited neighbours from the
* data set.
*/
function sortDistances (a, b) {
return b[1] - a[1];
}
export default function () {
var neighbours = [],
distance = constant(300),
nodes,
neighbourSize = 10,
sampleSize = 10,
stableVelocity = 0,
stableVeloHandler = null,
dataSizeFactor,
latestVelocityDiff = 0;
/**
* Apply spring forces at each simulation iteration.
* @param {number} alpha - multiplier for amount of force applied
*/
function force (alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler !== null && stableVelocity >= 0) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
for (let i = n - 1, node, samples; i >= 0; i--) {
node = nodes[i];
samples = createRandomSamples(i);
for (let [neighbourID, highDDist] of neighbours[i]) {
setVelocity(node, nodes[neighbourID], highDDist, alpha);
}
for (let [sampleID, highDDist] of samples) {
setVelocity(node, nodes[sampleID], highDDist, alpha);
}
neighbours[i] = findNewNeighbours(neighbours[i], samples);
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler !== null && stableVelocity >= 0) {
let velocityDiff = 0;
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx - node.oldvx, node.vy - node.oldvy));
}
velocityDiff /= n;
latestVelocityDiff = velocityDiff;
if (velocityDiff < stableVelocity) {
stableVeloHandler();
}
}
}
/**
* Apply force to both source and target nodes.
* @param {number} source - source node object
* @param {number} target - target node object
* @param {number} dist - high dimensional distance between the two nodes
* @param {number} alpha - multiplier for the amount of force applied
*/
function setVelocity (source, target, dist, alpha) {
let x, y, l;
// jiggle so l won't be zero and divide by zero error after this
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - dist) / l * dataSizeFactor * alpha;
x *= l; y *= l;
// Set the calculated velocites for both nodes.
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
// Called on nodes change and added to a simulation
function initialize () {
if (!nodes) return;
// Initialize for each node some random neighbours.
for (let i = nodes.length - 1; i >= 0; i--) {
let neighbs = pickRandomNodesFor(i, [i], neighbourSize);
// Sort the neighbour set by the distances.
neighbours[i] = new Map(neighbs.sort(sortDistances));
}
initDataSizeFactor();
}
function initDataSizeFactor () {
dataSizeFactor = 0.5 / (neighbourSize + sampleSize);
}
/**
* Generates an array of array[index, high-d distance to the node of index]
* where all indices are different and the size is as specified unless
* impossible (may be due to too large size requested)
* @param {number} index - index of a node to calculate distance against
* @param {array} exclude - indices of the nodes to ignore.
* @param {number} size - max number of elements in the map to return.
* @return {array}
*/
function pickRandomNodesFor (index, exclude, size) {
let randElements = [];
let max = nodes.length;
for (let i = 0; i < size; i++) {
// Stop when no new elements can be found.
if (randElements.length + exclude.length >= nodes.length) {
break;
}
let rand = Math.floor(Math.random() * max);
// Re-random until suitable value is found.
while (randElements.includes(rand) || exclude.includes(rand)) {
rand = Math.floor(Math.random() * max);
}
randElements.push(rand);
}
for (let i = randElements.length - 1, rand; i >= 0; i--) {
rand = randElements[i];
randElements[i] = [rand, distance(nodes[index], nodes[rand])];
}
return randElements;
}
/**
* Generates a map {index: high-dimensional distance to the node of index}
* to be used as samples set for the node of the specified index.
* @param {number} index - index of the node to generate sample for
* @return {map}
*/
function createRandomSamples (index) {
// Ignore the current neighbours of the node and itself.
let exclude = [index];
exclude = exclude.concat(Array.from(neighbours[index].keys()));
return new Map(pickRandomNodesFor(index, exclude, sampleSize));
}
/**
* Compares the elements from sample set to the neighbour set and replaces the
* elements in the neighbour set if any better neighbours are found.
* @param {map} neighbours - map of neighbours
* @param {map} samples - map of samples
* @return {map} - new map of neighbours
*/
function findNewNeighbours (neighbours, samples) {
let combined = [...neighbours.entries()].concat([...samples.entries()]);
combined = combined.sort(sortDistances);
return new Map(combined.slice(0, neighbourSize));
}
// API for initializing the algorithm and setting parameters
force.initialize = function (_) {
nodes = _;
initialize();
};
force.neighbourSize = function (_) {
return arguments.length ? (neighbourSize = +_, initialize(), force) : neighbourSize;
};
force.neighbours = function () {
return neighbours;
};
force.sampleSize = function (_) {
return arguments.length ? (sampleSize = +_, initDataSizeFactor(), force) : sampleSize;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.latestAccel = function () {
return latestVelocityDiff;
};
force.onStableVelo = function (_) {
return arguments.length ? (stableVeloHandler = _, force) : stableVeloHandler;
};
force.stableVelocity = function (_) {
return arguments.length ? (stableVelocity = _, force) : stableVelocity;
};
return force;
}

View File

@@ -4,12 +4,13 @@
* to the better layout.
* @return {number} - stress of the layout.
*/
export function getStress(nodes, distance) {
let sumDiffSq = 0
export function getStress (nodes, distance) {
let sumDiffSq = 0;
let sumLowDDistSq = 0;
for (let j = nodes.length-1; j >= 1; j--) {
for (let j = nodes.length - 1; j >= 1; j--) {
for (let i = 0; i < j; i++) {
let source = nodes[i], target = nodes[j];
let source = nodes[i];
let target = nodes[j];
let lowDDist = Math.hypot(target.x - source.x, target.y - source.y);
let highDDist = distance(source, target);
sumDiffSq += Math.pow(highDDist - lowDDist, 2);

View File

@@ -1,374 +1,374 @@
import constant from "./constant";
/**
* Set the node id accessor to the specified i.
* @param {node} d - node.
* @param {accessor} i - id accessor.
* @return {accessor} - node id accessor.
*/
function index(d, i) {
return i;
}
/**
* t-SNE implementation in D3 by using the code existing in tsnejs
* (https://github.com/karpathy/tsnejs) to compute the solution.
*/
export default function() {
var id = index,
distance = constant(300),
nodes,
perplexity = 30,
learningRate = 10,
iteration = 0,
dim = 2,
N, // length of the nodes.
P, // probability matrix.
Y, // solution.
gains,
ystep;
/**
* Make a step in t-SNE algorithm and set the velocities for the nodes
* to accumulate the values from solution.
*/
function force() {
// Make a step at each iteration.
step();
var solution = getSolution();
// Set the velocity for each node using the solution.
for (var i = 0; i < nodes.length; i++) {
nodes[i].vx += solution[i][0];
nodes[i].vy += solution[i][1];
}
}
/**
* Calculates the random number from Gaussian distribution.
* @return {number} random number.
*/
function gaussRandom() {
let u = 2 * Math.random() - 1;
let v = 2 * Math.random() - 1;
let r = u * u + v * v;
if (r == 0 || r > 1) return gaussRandom();
return u * Math.sqrt(-2 * Math.log(r) / r);
}
/**
* Return the normalized number.
* @return {number} normalized random number from Gaussian distribution.
*/
function randomN() {
return gaussRandom() * 1e-4;
}
function sign(x) {
return x > 0 ? 1 : x < 0 ? -1 : 0;
}
/**
* Create an array of length n filled with zeros.
* @param {number} n - length of array.
* @return {Float64Array} - array of zeros with length n.
*/
function zeros(n) {
if (typeof(n) === 'undefined' || isNaN(n)) {
return [];
}
return new Float64Array(n); // typed arrays are faster
}
// Returns a 2d array of random numbers
/**
* Creates a 2d array filled with random numbers.
* @param {number} n - rows.
* @param {number} d - columns.
* @return {array} - 2d array
*/
function random2d(n, d) {
var x = [];
for (var i = 0; i < n; i++) {
var y = [];
for (var j = 0; j < d; j++) {
y.push(randomN());
}
x.push(y);
}
return x;
}
/**
* Compute the probability matrix using the provided data.
* @param {array} data - nodes.
* @param {number} perplexity - used to calculate entropy of distribution.
* @param {number} tol - limit for entropy difference.
* @return {2d array} - 2d matrix containing probabilities.
*/
function d2p(data, perplexity, tol) {
N = Math.floor(data.length);
var Htarget = Math.log(perplexity); // target entropy of distribution.
var P1 = zeros(N * N); // temporary probability matrix.
var prow = zeros(N); // a temporary storage compartment.
for (var i = 0; i < N; i++) {
var betamin = -Infinity;
var betamax = Infinity;
var beta = 1; // initial value of precision.
var done = false;
var maxtries = 50;
// Perform binary search to find a suitable precision beta
// so that the entropy of the distribution is appropriate.
var num = 0;
while (!done) {
// Compute entropy and kernel row with beta precision.
var psum = 0.0;
for (var j = 0; j < N; j++) {
var pj = Math.exp(-distance(data[i], data[j]) * beta);
// Ignore the diagonals
if (i === j) {
pj = 0;
}
prow[j] = pj;
psum += pj;
}
// Normalize p and compute entropy.
var Hhere = 0.0;
for (j = 0; j < N; j++) {
if (psum == 0) {
pj = 0;
} else {
pj = prow[j] / psum;
}
prow[j] = pj;
if (pj > 1e-7) {
Hhere -= pj * Math.log(pj);
}
}
// Adjust beta based on result.
if (Hhere > Htarget) {
// Entropy was too high (distribution too diffuse)
// so we need to increase the precision for more peaky distribution.
betamin = beta; // move up the bounds.
if (betamax === Infinity) {
beta = beta * 2;
} else {
beta = (beta + betamax) / 2;
}
} else {
// Converse case. Make distrubtion less peaky.
betamax = beta;
if (betamin === -Infinity) {
beta = beta / 2;
} else {
beta = (beta + betamin) / 2;
}
}
// Stopping conditions: too many tries or got a good precision.
num++;
if (Math.abs(Hhere - Htarget) < tol || num >= maxtries) {
done = true;
}
}
// Copy over the final prow to P1 at row i
for (j = 0; j < N; j++) {
P1[i * N + j] = prow[j];
}
}
// Symmetrize P and normalize it to sum to 1 over all ij
var Pout = zeros(N * N);
var N2 = N * 2;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
Pout[i * N + j] = Math.max((P1[i * N + j] + P1[j * N + i]) / N2, 1e-100);
}
}
return Pout;
}
/**
* Initialize a starting (random) solution.
*/
function initSolution() {
Y = random2d(N, dim);
// Step gains to accelerate progress in unchanging directions.
gains = random2d(N, dim, 1.0);
// Momentum accumulator.
ystep = random2d(N, dim, 0.0);
iteration = 0;
}
/**
* @return {2d array} the solution.
*/
function getSolution() {
return Y;
}
/**
* Do a single step (iteration) for the layout.
* @return {number} the current cost.
*/
function step() {
iteration += 1;
var cg = costGrad(Y); // Evaluate gradient.
var cost = cg.cost;
var grad = cg.grad;
// Perform gradient step.
var ymean = zeros(dim);
for (var i = 0; i < N; i++) {
for (var d = 0; d < dim; d++) {
var gid = grad[i][d];
var sid = ystep[i][d];
var gainid = gains[i][d];
// Compute gain update.
var newgain = sign(gid) === sign(sid) ? gainid * 0.8 : gainid + 0.2;
if (newgain < 0.01) {
newgain = 0.01;
}
gains[i][d] = newgain;
// Compute momentum step direction.
var momval = iteration < 250 ? 0.5 : 0.8;
var newsid = momval * sid - learningRate * newgain * grad[i][d];
ystep[i][d] = newsid;
// Do the step.
Y[i][d] += newsid;
// Accumulate mean so that we can center later.
ymean[d] += Y[i][d];
}
}
// Reproject Y to have the zero mean.
for (i = 0; i < N; i++) {
for (d = 0; d < dim; d++) {
Y[i][d] -= ymean[d] / N;
}
}
return cost;
}
/**
* Calculate the cost and the gradient.
* @param {2d array} Y - the current solution to evaluate.
* @return {object} that contains a cost and a gradient.
*/
function costGrad(Y) {
var pmul = iteration < 100 ? 4 : 1;
// Compute current Q distribution, unnormalized first.
var Qu = zeros(N * N);
var qsum = 0.0;
for (var i = 0; i < N; i++) {
for (var j = i + 1; j < N; j++) {
var dsum = 0.0;
for (var d = 0; d < dim; d++) {
var dhere = Y[i][d] - Y[j][d];
dsum += dhere * dhere;
}
var qu = 1.0 / (1.0 + dsum); // Student t-distribution.
Qu[i * N + j] = qu;
Qu[j * N + i] = qu;
qsum += 2 * qu;
}
}
// Normalize Q distribution to sum to 1.
var NN = N * N;
var Q = zeros(NN);
for (var q = 0; q < NN; q++) {
Q[q] = Math.max(Qu[q] / qsum, 1e-100);
}
var cost = 0.0;
var grad = [];
for (i = 0; i < N; i++) {
var gsum = new Array(dim); // Initialize gradiet for point i.
for (d = 0; d < dim; d++) {
gsum[d] = 0.0;
}
for (j = 0; j < N; j++) {
// Accumulate the cost.
cost += -P[i * N + j] * Math.log(Q[i * N + j]);
var premult = 4 * (pmul * P[i * N + j] - Q[i * N + j]) * Qu[i * N + j];
for (d = 0; d < dim; d++) {
gsum[d] += premult * (Y[i][d] - Y[j][d]);
}
}
grad.push(gsum);
}
return {
cost: cost,
grad: grad
};
}
/**
* Calculates the stress. Basically, it computes the difference between
* high dimensional distance and real distance. The lower the stress is,
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress() {
var totalDiffSq = 0,
totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i], target = nodes[j];
realDist = Math.hypot(target.x - source.x, target.y - source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist - highDist, 2);
totalHighDistSq += highDist * highDist;
}
}
}
return Math.sqrt(totalDiffSq / totalHighDistSq);
}
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function(_) {
nodes = _;
N = nodes.length;
// Initialize the probability matrix.
P = d2p(nodes, perplexity, 1e-4);
initSolution();
};
force.id = function(_) {
return arguments.length ? (id = _, force) : id;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
};
force.stress = function() {
return getStress();
};
force.learningRate = function(_) {
return arguments.length ? (learningRate = +_, force) : learningRate;
};
force.perplexity = function(_) {
return arguments.length ? (perplexity = +_, force) : perplexity;
};
return force;
}
/* eslint-disable block-scoped-var */
import constant from './constant';
/**
* Set the node id accessor to the specified i.
* @param {node} d - node.
* @param {accessor} i - id accessor.
* @return {accessor} - node id accessor.
*/
function index (d, i) {
return i;
}
/**
* t-SNE implementation in D3 by using the code existing in tsnejs
* (https://github.com/karpathy/tsnejs) to compute the solution.
*/
export default function () {
var id = index,
distance = constant(300),
nodes,
perplexity = 30,
learningRate = 10,
iteration = 0,
dim = 2,
N, // length of the nodes.
P, // probability matrix.
Y, // solution.
gains,
ystep;
/**
* Make a step in t-SNE algorithm and set the velocities for the nodes
* to accumulate the values from solution.
*/
function force () {
// Make a step at each iteration.
step();
var solution = getSolution();
// Set the velocity for each node using the solution.
for (var i = 0; i < nodes.length; i++) {
nodes[i].vx += solution[i][0];
nodes[i].vy += solution[i][1];
}
}
/**
* Calculates the random number from Gaussian distribution.
* @return {number} random number.
*/
function gaussRandom () {
let u = 2 * Math.random() - 1;
let v = 2 * Math.random() - 1;
let r = u * u + v * v;
if (r === 0 || r > 1) {
return gaussRandom();
}
return u * Math.sqrt(-2 * Math.log(r) / r);
}
/**
* Return the normalized number.
* @return {number} normalized random number from Gaussian distribution.
*/
function randomN () {
return gaussRandom() * 1e-4;
}
function sign (x) {
return x > 0 ? 1 : x < 0 ? -1 : 0;
}
/**
* Create an array of length n filled with zeros.
* @param {number} n - length of array.
* @return {Float64Array} - array of zeros with length n.
*/
function zeros (n) {
if (typeof n === 'undefined' || isNaN(n)) {
return [];
}
return new Float64Array(n); // typed arrays are faster
}
// Returns a 2d array of random numbers
/**
* Creates a 2d array filled with random numbers.
* @param {number} n - rows.
* @param {number} d - columns.
* @return {array} - 2d array
*/
function random2d (n, d) {
var x = [];
for (var i = 0; i < n; i++) {
var y = [];
for (var j = 0; j < d; j++) {
y.push(randomN());
}
x.push(y);
}
return x;
}
/**
* Compute the probability matrix using the provided data.
* @param {array} data - nodes.
* @param {number} perplexity - used to calculate entropy of distribution.
* @param {number} tol - limit for entropy difference.
* @return {2d array} - 2d matrix containing probabilities.
*/
function d2p (data, perplexity, tol) {
N = Math.floor(data.length);
var Htarget = Math.log(perplexity); // target entropy of distribution.
var P1 = zeros(N * N); // temporary probability matrix.
var prow = zeros(N); // a temporary storage compartment.
for (var i = 0; i < N; i++) {
var betamin = -Infinity;
var betamax = Infinity;
var beta = 1; // initial value of precision.
var done = false;
var maxtries = 50;
// Perform binary search to find a suitable precision beta
// so that the entropy of the distribution is appropriate.
var num = 0;
while (!done) {
// Compute entropy and kernel row with beta precision.
var psum = 0.0;
for (var j = 0; j < N; j++) {
var pj = Math.exp(-distance(data[i], data[j]) * beta);
// Ignore the diagonals
if (i === j) {
pj = 0;
}
prow[j] = pj;
psum += pj;
}
// Normalize p and compute entropy.
var Hhere = 0.0;
for (j = 0; j < N; j++) {
if (psum === 0) {
pj = 0;
} else {
pj = prow[j] / psum;
}
prow[j] = pj;
if (pj > 1e-7) {
Hhere -= pj * Math.log(pj);
}
}
// Adjust beta based on result.
if (Hhere > Htarget) {
// Entropy was too high (distribution too diffuse)
// so we need to increase the precision for more peaky distribution.
betamin = beta; // move up the bounds.
if (betamax === Infinity) {
beta = beta * 2;
} else {
beta = (beta + betamax) / 2;
}
} else {
// Converse case. Make distrubtion less peaky.
betamax = beta;
if (betamin === -Infinity) {
beta = beta / 2;
} else {
beta = (beta + betamin) / 2;
}
}
// Stopping conditions: too many tries or got a good precision.
num++;
if (Math.abs(Hhere - Htarget) < tol || num >= maxtries) {
done = true;
}
}
// Copy over the final prow to P1 at row i
for (j = 0; j < N; j++) {
P1[i * N + j] = prow[j];
}
}
// Symmetrize P and normalize it to sum to 1 over all ij
var Pout = zeros(N * N);
var N2 = N * 2;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
Pout[i * N + j] = Math.max((P1[i * N + j] + P1[j * N + i]) / N2, 1e-100);
}
}
return Pout;
}
/**
* Initialize a starting (random) solution.
*/
function initSolution () {
Y = random2d(N, dim);
// Step gains to accelerate progress in unchanging directions.
gains = random2d(N, dim, 1.0);
// Momentum accumulator.
ystep = random2d(N, dim, 0.0);
iteration = 0;
}
/**
* @return {2d array} the solution.
*/
function getSolution () {
return Y;
}
/**
* Do a single step (iteration) for the layout.
* @return {number} the current cost.
*/
function step () {
iteration += 1;
var cg = costGrad(Y); // Evaluate gradient.
var cost = cg.cost;
var grad = cg.grad;
// Perform gradient step.
var ymean = zeros(dim);
for (var i = 0; i < N; i++) {
for (var d = 0; d < dim; d++) {
var gid = grad[i][d];
var sid = ystep[i][d];
var gainid = gains[i][d];
// Compute gain update.
var newgain = sign(gid) === sign(sid) ? gainid * 0.8 : gainid + 0.2;
if (newgain < 0.01) {
newgain = 0.01;
}
gains[i][d] = newgain;
// Compute momentum step direction.
var momval = iteration < 250 ? 0.5 : 0.8;
var newsid = momval * sid - learningRate * newgain * grad[i][d];
ystep[i][d] = newsid;
// Do the step.
Y[i][d] += newsid;
// Accumulate mean so that we can center later.
ymean[d] += Y[i][d];
}
}
// Reproject Y to have the zero mean.
for (i = 0; i < N; i++) {
for (d = 0; d < dim; d++) {
Y[i][d] -= ymean[d] / N;
}
}
return cost;
}
/**
* Calculate the cost and the gradient.
* @param {2d array} Y - the current solution to evaluate.
* @return {object} that contains a cost and a gradient.
*/
function costGrad (Y) {
var pmul = iteration < 100 ? 4 : 1;
// Compute current Q distribution, unnormalized first.
var Qu = zeros(N * N);
var qsum = 0.0;
for (var i = 0; i < N; i++) {
for (var j = i + 1; j < N; j++) {
var dsum = 0.0;
for (var d = 0; d < dim; d++) {
var dhere = Y[i][d] - Y[j][d];
dsum += dhere * dhere;
}
var qu = 1.0 / (1.0 + dsum); // Student t-distribution.
Qu[i * N + j] = qu;
Qu[j * N + i] = qu;
qsum += 2 * qu;
}
}
// Normalize Q distribution to sum to 1.
var NN = N * N;
var Q = zeros(NN);
for (var q = 0; q < NN; q++) {
Q[q] = Math.max(Qu[q] / qsum, 1e-100);
}
var cost = 0.0;
var grad = [];
for (i = 0; i < N; i++) {
var gsum = new Array(dim); // Initialize gradiet for point i.
for (d = 0; d < dim; d++) {
gsum[d] = 0.0;
}
for (j = 0; j < N; j++) {
// Accumulate the cost.
cost += -P[i * N + j] * Math.log(Q[i * N + j]);
var premult = 4 * (pmul * P[i * N + j] - Q[i * N + j]) * Qu[i * N + j];
for (d = 0; d < dim; d++) {
gsum[d] += premult * (Y[i][d] - Y[j][d]);
}
}
grad.push(gsum);
}
return {
cost: cost,
grad: grad
};
}
/**
* Calculates the stress. Basically, it computes the difference between
* high dimensional distance and real distance. The lower the stress is,
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress () {
var totalDiffSq = 0,
totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i]; target = nodes[j];
realDist = Math.hypot(target.x - source.x, target.y - source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist - highDist, 2);
totalHighDistSq += highDist * highDist;
}
}
}
return Math.sqrt(totalDiffSq / totalHighDistSq);
}
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function (_) {
nodes = _;
N = nodes.length;
// Initialize the probability matrix.
P = d2p(nodes, perplexity, 1e-4);
initSolution();
};
force.id = function (_) {
return arguments.length ? (id = _, force) : id;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.stress = function () {
return getStress();
};
force.learningRate = function (_) {
return arguments.length ? (learningRate = +_, force) : learningRate;
};
force.perplexity = function (_) {
return arguments.length ? (perplexity = +_, force) : perplexity;
};
return force;
}

View File

@@ -1,13 +1,13 @@
/**
* @return x value of a node
*/
export function x(d) {
return d.x;
}
/**
* @return y value of a node
*/
export function y(d) {
return d.y;
}
/**
* @return x value of a node
*/
export function x (d) {
return d.x;
}
/**
* @return y value of a node
*/
export function y (d) {
return d.y;
}