270 lines
7.3 KiB
JavaScript
270 lines
7.3 KiB
JavaScript
function doInterpolationPivots(sampleSet, remainderSet, interpSubset, properties) {
|
|
var distance = calculateDistancePoker;
|
|
// var distance = calculateEuclideanDistance;
|
|
|
|
// Pivot based parent finding
|
|
|
|
var numBuckets = Math.floor(Math.sqrt(sampleSet.length)),
|
|
// numPivots = Math.floor(Math.sqrt(sampleSet.length)),
|
|
numPivots = 3,
|
|
parents = [],
|
|
maxDists = [],
|
|
bucketWidths = [],
|
|
pivotsBuckets = [];
|
|
|
|
console.log("Parents, pivots=", numPivots);
|
|
|
|
var pivots = createRandomSample(sampleSet.concat(remainderSet), sampleSet.length, numPivots);
|
|
|
|
for (var i = 0; i < numPivots; i++) {
|
|
pivotsBuckets[i] = [];
|
|
for (var j = 0; j < numBuckets; j++) {
|
|
pivotsBuckets[i][j] = [];
|
|
}
|
|
}
|
|
|
|
// Pre-processing
|
|
var fullDists = []
|
|
for (var i = 0; i < sampleSet.length; i++) {
|
|
fullDists[i] = [];
|
|
}
|
|
|
|
for (var j = 0, maxDist = -1; j < numPivots; j++) {
|
|
var c1 = pivots[j];
|
|
for (var i = 0; i < sampleSet.length; i++) {
|
|
var c2 = sampleSet[i];
|
|
if (c1 !== c2) {
|
|
var dist = distance(c1, c2, properties);
|
|
// console.log(dist, c1, c2);
|
|
if (dist > maxDist) {
|
|
maxDist = dist;
|
|
}
|
|
fullDists[i][j] = dist;
|
|
} else {
|
|
fullDists[i][j] = 0.0001;
|
|
}
|
|
}
|
|
maxDists.push(maxDist);
|
|
bucketWidths.push(maxDist / numBuckets);
|
|
}
|
|
|
|
// console.log(fullDists);
|
|
|
|
for (var j = 0; j < numPivots; j++) {
|
|
var bucketWidth = bucketWidths[j];
|
|
for (var i = 0; i < sampleSet.length; i++) {
|
|
var tmp = pivotsBuckets[j][Math.floor((fullDists[i][j] - 0.0001) / bucketWidth)];
|
|
// pivotsBuckets[j][Math.floor((fullDists[i][j] - 0.0001) / bucketWidth)].push(sampleSet[i]);
|
|
// console.log(tmp, i, j, bucketWidth, Math.floor((fullDists[i][j] - 0.0001) / bucketWidth));
|
|
tmp.push(sampleSet[i]);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < remainderSet.length; i++) {
|
|
var node = remainderSet[i],
|
|
minNode = sampleSet[0],
|
|
minDist = 0,
|
|
sampleCache = [];
|
|
|
|
// Pivot based parent search
|
|
|
|
var node = remainderSet[i];
|
|
var clDist = Number.MAX_VALUE;
|
|
for (var p = 0; p < numPivots; p++) {
|
|
var comp = pivots[p];
|
|
var bucketWidth = bucketWidths[p];
|
|
if (node !== comp) {
|
|
var dist = distance(node, comp, properties);
|
|
bNum = Math.floor((dist - 0.0001) / bucketWidth);
|
|
if (bNum >= numBuckets) {
|
|
bNum = numBuckets - 1;
|
|
} else if (bNum < 0) {
|
|
bNum = 0;
|
|
}
|
|
var bucketContents = pivotsBuckets[p][bNum];
|
|
for (var w = 0; w < bucketContents.length; w++) {
|
|
var c1 = bucketContents[w];
|
|
if (c1 != node) {
|
|
dist = distance(c1, node, properties);
|
|
if (dist <= clDist) {
|
|
clDist = dist;
|
|
minNode = bucketContents[w];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for (var k = 0; k < interpSubset.length; k++) {
|
|
sampleCache[k] = distance(node, interpSubset[k], properties);
|
|
}
|
|
var radius = distance(node, minNode, properties);
|
|
placeNearToNearestNeighbour(node, minNode, interpSubset, sampleCache, radius);
|
|
}
|
|
}
|
|
|
|
|
|
function placeNearToNearestNeighbour(node, minNode, sample, sampleCache, radius) {
|
|
var
|
|
dist0 = 0.0,
|
|
dist90 = 0.0,
|
|
dist180 = 0.0,
|
|
dist270 = 0.0,
|
|
lowBound = 0.0,
|
|
highBound = 0.0;
|
|
|
|
dist0 = sumDistToSample(node, centerPoint(0, radius, minNode.x, minNode.y), sample, sampleCache);
|
|
dist90 = sumDistToSample(node, centerPoint(90, radius, minNode.x, minNode.y), sample, sampleCache);
|
|
dist180 = sumDistToSample(node, centerPoint(180, radius, minNode.x, minNode.y), sample, sampleCache);
|
|
dist270 = sumDistToSample(node, centerPoint(270, radius, minNode.x, minNode.y), sample, sampleCache);
|
|
|
|
// console.log(dist0, dist90, dist180, dist270);
|
|
|
|
// Determine the closest quadrant
|
|
|
|
if (dist0 == dist180) {
|
|
if (dist90 > dist270)
|
|
lowBound = highBound = 270;
|
|
else
|
|
lowBound = highBound = 90;
|
|
|
|
} else if (dist90 == dist270) {
|
|
if (dist0 > dist180)
|
|
lowBound = highBound = 180;
|
|
else
|
|
lowBound = highBound = 0;
|
|
} else if (dist0 > dist180) {
|
|
if (dist90 > dist270) {
|
|
lowBound = 180;
|
|
highBound = 270;
|
|
} else {
|
|
lowBound = 90;
|
|
highBound = 180;
|
|
}
|
|
} else {
|
|
if (dist90 > dist270) {
|
|
lowBound = 270;
|
|
highBound = 360;
|
|
} else {
|
|
lowBound = 0;
|
|
highBound = 90;
|
|
}
|
|
}
|
|
|
|
var angle = binarySearch(lowBound, highBound, minNode.x, minNode.y, radius, node, sample, sampleCache);
|
|
var newPoint = centerPoint(angle, radius, minNode.x, minNode.y);
|
|
|
|
// console.log(newPoint);
|
|
node.x = newPoint.x;
|
|
node.y = newPoint.y;
|
|
|
|
// for (var i = 0; i < 20; i++) {
|
|
// var forces = sumForcesToSample(node, sample, sampleCache);
|
|
// // console.log(forces);
|
|
// node.x += forces.x;
|
|
// node.y += forces.y;
|
|
// }
|
|
|
|
}
|
|
|
|
|
|
function centerPoint(angle, radius, posX, posY) {
|
|
var x = posX + Math.cos(toRadians(angle) * radius);
|
|
var y = posY + Math.sin(toRadians(angle) * radius);
|
|
|
|
return {
|
|
x: x,
|
|
y: y
|
|
};
|
|
}
|
|
|
|
function toRadians(degrees) {
|
|
return degrees * (Math.PI / 180);
|
|
}
|
|
|
|
function sumDistToSample(node, point, sample, sampleCache) {
|
|
var total = 0.0;
|
|
// console.log(total, sample);
|
|
|
|
for (var i = 0; i < sample.length; i++) {
|
|
var s = sample[i];
|
|
var realDist = Math.hypot(s.x - point.x, s.y - point.y);
|
|
var desDist = sampleCache[i];
|
|
total += Math.abs(realDist - desDist);
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
function sumForcesToSample(node, sample, sampleCache) {
|
|
var x = 0,
|
|
y = 0,
|
|
// len = 0,
|
|
dist = 0,
|
|
force,
|
|
SPRING_FORCE = 0.7;
|
|
|
|
for (var i = 0, unitX, unitY; i < sample.length; i++) {
|
|
var s = sample[i];
|
|
if (s !== node) {
|
|
unitX = s.x - node.x;
|
|
unitY = s.y - node.y;
|
|
|
|
// Normalize coordinates
|
|
len = Math.sqrt(unitX * unitX + unitY * unitY);
|
|
unitX /= len;
|
|
unitY /= len;
|
|
|
|
console.log(unitX, unitY);
|
|
|
|
var realDist = Math.sqrt(unitX * unitX + unitY * unitY);
|
|
var desDist = sampleCache[i];
|
|
dist += realDist - desDist;
|
|
force = (SPRING_FORCE * dist);
|
|
|
|
x += unitX * force;
|
|
y += unitY * force;
|
|
}
|
|
|
|
x *= (1.0 / sample.length);
|
|
y *= (1.0 / sample.length);
|
|
|
|
return {
|
|
x: x,
|
|
y: y
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
function binarySearch(lb, hb, x, y, r, node, sample, sampleCache) {
|
|
while (lb <= hb) {
|
|
var mid = Math.round((lb + hb) / 2);
|
|
|
|
if ((mid === lb) || (mid === hb)) {
|
|
if (sumDistToSample(node, centerPoint(lb, r, x, y), sample, sampleCache) >=
|
|
sumDistToSample(node, centerPoint(hb, r, x, y), sample, sampleCache)) {
|
|
return hb;
|
|
} else {
|
|
return lb;
|
|
}
|
|
} else {
|
|
var distMidLeft = sumDistToSample(node, centerPoint(mid + 1, r, x, y), sample, sampleCache);
|
|
var distMidRight = sumDistToSample(node, centerPoint(mid - 1, r, x, y), sample, sampleCache);
|
|
var distMid = sumDistToSample(node, centerPoint(mid, r, x, y), sample, sampleCache);
|
|
|
|
if (distMid > distMidLeft) {
|
|
lb = mid + 1;
|
|
} else if (distMid > distMidRight) {
|
|
hb = mid - 1;
|
|
} else {
|
|
return mid;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|