Files
d3-spring-model/src/neighbourSampling.js
Pitchaya Boonsarngsuk 20db8591aa Add console logs
2018-02-05 20:06:12 +00:00

208 lines
6.6 KiB
JavaScript

import constant from "./constant";
import jiggle from "./jiggle";
import {getStress} from "./stress";
/**
* An implementation of Chalmers' 1996 Neighbour and Sampling algorithm.
* It uses random sampling to find the most suited neighbours from the
* data set.
*/
function sortDistances(a, b) {
return b[1] - a[1];
}
export default function () {
var neighbours = [],
distance = constant(300),
nodes,
neighbourSize = 10,
sampleSize = 10,
stableVelocity = 0,
stableVeloHandler = null,
dataSizeFactor,
latestVelocityDiff = 0;
/**
* Apply spring forces at each simulation iteration.
* @param {number} alpha - multiplier for amount of force applied
*/
function force(alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler!==null && stableVelocity>=0) {
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
for (let i = n-1, node, samples; i>=0; i--) {
node = nodes[i];
samples = createRandomSamples(i);
for (let [neighbourID, highDDist] of neighbours[i]) {
setVelocity(node, nodes[neighbourID], highDDist, alpha);
}
for (let [sampleID, highDDist] of samples) {
setVelocity(node, nodes[sampleID], highDDist, alpha);
}
neighbours[i] = findNewNeighbours(neighbours[i], samples);
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler!==null && stableVelocity>=0) {
let velocityDiff = 0;
for (let i = n-1, node; i>=0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx-node.oldvx, node.vy-node.oldvy));
}
velocityDiff /= n*(neighbourSize+sampleSize);
latestVelocityDiff = velocityDiff;
if(stableVeloHandler!==null && velocityDiff<stableVelocity){
stableVeloHandler();
}
else console.log(velocityDiff);
}
}
/**
* Apply force to both source and target nodes.
* @param {number} source - source node object
* @param {number} target - target node object
* @param {number} dist - high dimensional distance between the two nodes
* @param {number} alpha - multiplier for the amount of force applied
*/
function setVelocity(source, target, dist, alpha) {
let x, y, l;
// jiggle so l won't be zero and divide by zero error after this
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - dist) / l * dataSizeFactor * alpha;
x *= l, y *= l;
// Set the calculated velocites for both nodes.
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
// Called on nodes change and added to a simulation
function initialize() {
if (!nodes) return;
// Initialize for each node some random neighbours.
for (let i = nodes.length-1; i>=0; i--) {
let neighbs = pickRandomNodesFor(i, [i], neighbourSize);
// Sort the neighbour set by the distances.
neighbours[i] = new Map(neighbs.sort(sortDistances));
}
initDataSizeFactor();
}
function initDataSizeFactor(){
dataSizeFactor = 0.5/(neighbourSize+sampleSize);
}
/**
* Generates an array of array[index, high-d distance to the node of index]
* where all indices are different and the size is as specified unless
* impossible (may be due to too large size requested)
* @param {number} index - index of a node to calculate distance against
* @param {array} exclude - indices of the nodes to ignore.
* @param {number} size - max number of elements in the map to return.
* @return {array}
*/
function pickRandomNodesFor(index, exclude, size) {
let randElements = [];
let max = nodes.length;
for (let i = 0; i < size; i++) {
// Stop when no new elements can be found.
if (randElements.length + exclude.length >= nodes.length) {
break;
}
let rand = Math.floor((Math.random() * max));
// Re-random until suitable value is found.
while (randElements.includes(rand) || exclude.includes(rand)) {
rand = Math.floor((Math.random() * max));
}
randElements.push(rand);
}
for(let i=randElements.length-1, rand; i>=0; i--){
rand = randElements[i];
randElements[i] = [rand, distance(nodes[index], nodes[rand])];
}
return randElements;
}
/**
* Generates a map {index: high-dimensional distance to the node of index}
* to be used as samples set for the node of the specified index.
* @param {number} index - index of the node to generate sample for
* @return {map}
*/
function createRandomSamples(index) {
// Ignore the current neighbours of the node and itself.
let exclude = [index];
exclude = exclude.concat(Array.from(neighbours[index].keys()));
return new Map(pickRandomNodesFor(index, exclude, sampleSize));
}
/**
* Compares the elements from sample set to the neighbour set and replaces the
* elements in the neighbour set if any better neighbours are found.
* @param {map} neighbours - map of neighbours
* @param {map} samples - map of samples
* @return {map} - new map of neighbours
*/
function findNewNeighbours(neighbours, samples) {
let combined = [...neighbours.entries()].concat([...samples.entries()]);
combined = combined.sort(sortDistances);
return new Map(combined.slice(0, neighbourSize));
}
// API for initializing the algorithm and setting parameters
force.initialize = function (_) {
nodes = _;
initialize();
};
force.neighbourSize = function (_) {
return arguments.length ? (neighbourSize = +_, initialize(), force) : neighbourSize;
};
force.neighbours = function () {
return neighbours;
};
force.sampleSize = function (_) {
return arguments.length ? (sampleSize = +_, initDataSizeFactor(), force) : sampleSize;
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
};
force.latestAccel = function () {
return latestVelocityDiff;
};
force.onStableVelo = function (_) {
return arguments.length ? (stableVeloHandler = _, force) : stableVeloHandler;
};
force.stableVelocity = function (_) {
return arguments.length ? (stableVelocity = _, force) : stableVelocity;
};
return force;
}