// Get the width and heigh of the SVG element. var width = +document.getElementById('svg').clientWidth, height = +document.getElementById('svg').clientHeight; var svg = d3.select("svg") .call(d3.zoom().scaleExtent([0.0001, 1000000]).on("zoom", function () { svg.attr("transform", d3.event.transform); })) .append("g"); var div = d3.select("body").append("div") .attr("class", "tooltip") .style("opacity", 0); var brush = d3.brush() .extent([[-9999999, -9999999], [9999999, 9999999]]) .on("end", brushEnded); svg.append("g") .attr("class", "brush") .call(brush); var intercom = Intercom.getInstance(); intercom.on("select", unSelectNodes); var nodes, // as in Data points node, // as in SVG object that have all small circles on screen props, norm, p1 = 0, p2 = 0, size, distanceFunction, simulation, velocities = [], rendering = true, // Rendering during the execution. forceName = "forces", springForce = false, tooltipWidth = 0, fileName = "", selectedData, clickedIndex = -1, paused = false; // Default parameters var MULTIPLIER = 50, PERPLEXITY = 30, LEARNING_RATE = 10, NEIGHBOUR_SIZE = 6, SAMPLE_SIZE = 3, PIVOTS = false, NUM_PIVOTS = 3, ITERATIONS = 300, FULL_ITERATIONS = 20, NODE_SIZE = 10, COLOR_ATTRIBUTE = "", SELECTED_DISTANCE = 10, FULL_NEIGHBOUR_SIZE = 6, FULL_SAMPLE_SIZE = 3, FULL_SELECTED_DISTANCE = 10; // Create a color scheme for a range of numbers. var color = d3.scaleOrdinal(d3.schemeCategory10); /** * Parse the data from the provided csv file using Papa Parse library * @param {file} evt - csv file. */ function parseFile(evt) { // Clear the previous nodes d3.selectAll(".nodes").remove(); springForce = false; fileName = evt.target.files[0].name; Papa.parse(evt.target.files[0], { header: true, dynamicTyping: true, skipEmptyLines: true, complete: function (results) { processData(results.data, results.error); } }); } /** * Process the data and pass it into D3 force simulation. * @param {array} data * @param {object} error */ function processData(data, error) { if (error) throw error.message; nodes = data; size = nodes.length; simulation = d3.forceSimulation(); // Calculate normalization arguments and get the list of // properties of the nodes. norm = calculateNormalization(nodes); // Used with distance fn props = Object.keys(nodes[0]); // Properties to consider by distance fn COLOR_ATTRIBUTE = props[props.length-1]; var opts = document.getElementById('color_attr').options; props.forEach(function (d) { opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE) ? true : false)); }); opts.selectedIndex = props.length-1; props.pop(); //Hide Iris index / last column from distance function //Put the nodes in random starting positions nodes.forEach(function (d) { d.x = (Math.random()-0.5) * 100000; d.y = (Math.random()-0.5) * 100000; }); // Add the nodes to DOM. node = svg.append("g") .attr("class", "nodes") .selectAll("circle") .data(nodes) .enter().append("circle") .attr("r", NODE_SIZE) .attr("transform", "translate(" + width / 2 + "," + height / 2 + ")") // Color code the data points by a property (for Poker Hands, // it is a CLASS property). .attr("fill", function (d) { return color(d[COLOR_ATTRIBUTE]); }) .on("mouseover", function (d) { div.transition() .duration(200) .style("opacity", .9); div.html(formatTooltip(d)) .style("left", (d3.event.pageX) + "px") .style("top", (d3.event.pageY - (15 * props.length)) + "px") .style("width", (6 * tooltipWidth) + "px") .style("height", (14 * props.length) + "px"); highlightOnHover(d[COLOR_ATTRIBUTE]); }) .on("mouseout", function (d) { div.transition() .duration(500) .style("opacity", 0); node.attr("opacity", 1); }) .on("click", function (d) { if (clickedIndex !== d.index) { if (springForce) { highlightNeighbours(Array.from(simulation.force(forceName).nodeNeighbours(d.index).keys())); clickedIndex = d.index; } } else { node.attr("r", NODE_SIZE).attr("stroke-width", 0); clickedIndex = -1; } }); // Pass the nodes to the D3 force simulation. simulation .nodes(nodes) .on("tick", ticked) .on("end", ended); }; function ticked() { // If rendering is selected, then draw at every iteration. if (rendering === true) { node // Each sub-circle in the SVG, update cx and cy .attr("cx", function (d) { return d.x; }) .attr("cy", function (d) { return d.y; }); } // Emit the distribution data to allow the drawing of the bar graph if (springForce) { intercom.emit("passedData", simulation.force(forceName).distributionData()); } } function ended() { if (rendering !== true) { // Never drawn anything before? Now it's time. node .attr("cx", function (d) { return d.x; }) .attr("cy", function (d) { return d.y; }); } if (p1 !== 0) { // Performance time measurement p2 = performance.now(); console.log("Execution time: " + (p2 - p1)); // Do not calculate stress for data sets bigger than 100 000. // if (nodes.length <= 100000) { // console.log("Stress: ", simulation.force(forceName).stress()); // } // console.log(simulation.force(forceName).nodeNeighbours()); p1 = 0; p2 = 0; } } function brushEnded() { var s = d3.event.selection, results = []; if (s) { var x0 = s[0][0] - width / 2, y0 = s[0][1] - height / 2, x1 = s[1][0] - width / 2, y1 = s[1][1] - height / 2; if (nodes) { var sel = node.filter(function (d) { if (d.x > x0 && d.x < x1 && d.y > y0 && d.y < y1) { return true; } return false; }).data(); results = sel.map(function (a) { return a.index; }); } intercom.emit("select", { name: fileName, indices: results }); d3.select(".brush").call(brush.move, null); } } /** * Format the tooltip for the data * @param {*} node */ function formatTooltip(node) { var textString = "", temp = ""; tooltipWidth = 0; props.forEach(function (element) { temp = element + ": " + node[element] + "
"; textString += temp; if (temp.length > tooltipWidth) { tooltipWidth = temp.length; } }); return textString; } /** * Initialize the Chalmers' 1996 algorithm and start simulation. */ function startNeighbourSamplingSimulation() { springForce = true; simulation.stop(); p1 = performance.now(); simulation .alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS)) .force(forceName, d3.forceNeighbourSamplingDistance() // Set the parameters for the algorithm (optional). .neighbourSize(NEIGHBOUR_SIZE) .sampleSize(SAMPLE_SIZE) // .freeness(0.5) .distanceRange(SELECTED_DISTANCE * MULTIPLIER) // The distance function that will be used to calculate distances // between nodes. .distance(function (s, t) { return distanceFunction(s, t, props, norm) * MULTIPLIER; }) .stableVelocity(1.2 * MULTIPLIER) .stableVeloHandler( function(){simulation.stop(); ended();} ) ); // Restart the simulation. console.log(simulation.force(forceName).neighbourSize(), simulation.force(forceName).sampleSize()); simulation.alpha(1).restart(); } /** * Initialize the hybrid layout algorithm and start simulation. */ function startHybridSimulation() { springForce = false; d3.selectAll(".nodes").remove(); simulation.stop(); p1 = performance.now(); configuration = { iteration: ITERATIONS, neighbourSize: NEIGHBOUR_SIZE, sampleSize: SAMPLE_SIZE, distanceRange: SELECTED_DISTANCE * MULTIPLIER, fullIterations: FULL_ITERATIONS, fullNeighbourSize: FULL_NEIGHBOUR_SIZE, fullSampleSize: FULL_SAMPLE_SIZE, fullDistanceRange: FULL_SELECTED_DISTANCE * MULTIPLIER, distanceFn: function (s, t) {return distanceFunction(s, t, props, norm) * MULTIPLIER;}, pivots: PIVOTS, numPivots: NUM_PIVOTS }; console.log(configuration); hybridSimulation = d3.hybridSimulation(nodes, configuration); let sample = hybridSimulation.sample(); let remainder = hybridSimulation.remainder(); // Add the nodes to DOM. node = svg.append("g") .attr("class", "nodes") .selectAll("circle") .data(sample) .enter().append("circle") .attr("r", NODE_SIZE) .attr("transform", "translate(" + width / 2 + "," + height / 2 + ")") // Color code the data points by a property (for Poker Hands, // it is a CLASS property). .attr("fill", function (d) { return color(d[COLOR_ATTRIBUTE]) }) .on("mouseover", function (d) { div.transition() .duration(200) .style("opacity", .9); div.html(formatTooltip(d)) .style("left", (d3.event.pageX) + "px") .style("top", (d3.event.pageY - (15 * props.length)) + "px") .style("width", (6 * tooltipWidth) + "px") .style("height", (14 * props.length) + "px"); highlightOnHover(d[COLOR_ATTRIBUTE]); }) .on("mouseout", function (d) { div.transition() .duration(500) .style("opacity", 0); node.attr("opacity", 1); }); if (selectedData) { unSelectNodes(selectedData); } hybridSimulation .on("sampleTick", ticked) .on("fullTick", ticked) .on("startFull", startedFull) .on("end", endedHybrid); function startedFull() { d3.selectAll(".nodes").remove(); // Add the nodes to DOM. node = svg.append("g") .attr("class", "nodes") .selectAll("circle") .data(nodes) .enter().append("circle") .attr("r", NODE_SIZE) .attr("transform", "translate(" + width / 2 + "," + height / 2 + ")") // Color code the data points by a property (for Poker Hands, // it is a CLASS property). .attr("fill", function (d) { return color(d[COLOR_ATTRIBUTE]) }) .on("mouseover", function (d) { div.transition() .duration(200) .style("opacity", .9); div.html(formatTooltip(d)) .style("left", (d3.event.pageX) + "px") .style("top", (d3.event.pageY - (15 * props.length)) + "px") .style("width", (6 * tooltipWidth) + "px") .style("height", (14 * props.length) + "px"); highlightOnHover(d[COLOR_ATTRIBUTE]); }) .on("mouseout", function (d) { div.transition() .duration(500) .style("opacity", 0); node.attr("opacity", 1); }); if (selectedData) { unSelectNodes(selectedData); } } function endedHybrid() { if (rendering !== true) { node .attr("cx", function (d) { return d.x; }) .attr("cy", function (d) { return d.y; }); } // Performance time measurement p2 = performance.now(); console.log("Execution time: " + (p2 - p1)); // Do not calculate stress for data sets bigger than 100 000. // if (nodes.length <= 100000) { // console.log("Stress: ", hybridSimulation.stress()); // } p1 = 0; p2 = 0; } } /** * Initialize the t-SNE algorithm and start simulation. */ function starttSNE() { springForce = false; simulation.stop(); p1 = performance.now(); simulation .alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS)) .force(forceName, d3.tSNE() // Set the parameter for the algorithm (optional). .perplexity(PERPLEXITY) .learningRate(LEARNING_RATE) // The distance function that will be used to calculate distances // between nodes. .distance(function (s, t) { return distanceFunction(s, t, props, norm) * MULTIPLIER; })); // Restart the simulation. console.log(simulation.force(forceName).perplexity(), simulation.force(forceName).learningRate()); simulation.alpha(1).restart(); } /** * Initialize the Barnes-Hut algorithm and start simulation. */ function startBarnesHutSimulation() { springForce = false; simulation.stop(); p1 = performance.now(); simulation .alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS)) .force(forceName, d3.forceBarnesHut() // The distance function that will be used to calculate distances // between nodes. .distance(function (s, t) { return distanceFunction(s, t, props, norm) * MULTIPLIER; })); // Restart the simulation. simulation.alpha(1).restart(); } /** * Initialize the link force algorithm and start simulation. */ function startLinkSimulation() { springForce = false; simulation.stop(); p1 = performance.now(); let links = []; // Initialize link array. nodes = simulation.nodes(); for (i = 0; i < nodes.length; i++) { for (j = 0; j < nodes.length; j++) { if (i !== j) { links.push({ source: nodes[i], target: nodes[j], }); } } } // Add the links to the simulation. simulation.force(forceName, d3.forceLink().links(links)); simulation .alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS)) .force(forceName) // The distance function that will be used to calculate distances // between nodes. .distance(function (n) { return distanceFunction(n.source, n.target, props, norm) * MULTIPLIER; }) // Set the parameter for the algorithm (optional). .strength(1); // Restart the simulation. simulation.alpha(1).restart(); } /** * Halt the execution. */ function stopSimulation() { simulation.stop(); if (typeof hybridSimulation !== 'undefined') { hybridSimulation.stop(); } } /** * Calculate the average values of the array. * @param {array} array * @return {number} the mean of the array. */ function getAverage(array) { var total = 0; for (var i = 0; i < array.length; i++) { total += array[i]; } return total / array.length; } /** * Deselect the nodes to match the selection from other window. * @param {*} data */ function unSelectNodes(data) { selectedData = data; if (fileName === data.name && nodes) { node .classed("notSelected", function (d) { if (data.indices.indexOf(d.index) < 0) { return true; } return false; }); } } /** * Highlight the neighbours for neighbour and sampling algorithm * @param {*} indices */ function highlightNeighbours(indices) { node .attr("r", function (d) { if (indices.indexOf(d.index) >= 0) { return NODE_SIZE * 2; } return NODE_SIZE; }) .attr("stroke-width", function (d) { if (indices.indexOf(d.index) >= 0) { return NODE_SIZE * 0.2 + "px"; } return "0px"; }) .attr("stroke", "white"); } /** * Highlight all the nodes with the same class on hover * @param {*} highlighValue */ function highlightOnHover(highlighValue) { node.attr("opacity", function (d) { return (highlighValue === d[COLOR_ATTRIBUTE]) ? 1 : 0.3; }); } /** * Color the nodes according to given attribute. */ function colorToAttribute() { node.attr("fill", function (d) { return color(d[COLOR_ATTRIBUTE]) }); } /** * Update the distance range. */ function updateDistanceRange() { if (springForce) { simulation.force(forceName).distanceRange(SELECTED_DISTANCE); } } /** * Implemented pause/resume functionality */ function pauseUnPause() { if (simulation) { if (paused) { simulation.force(forceName).distanceRange(SELECTED_DISTANCE); simulation.restart(); d3.select("#pauseButton").text("Pause"); paused = false; } else { simulation.stop(); d3.select("#pauseButton").text("Resume"); paused = true; } } } /** * Average distances for each node. * @param {*} dataNodes * @param {*} properties * @param {*} normalization */ function calculateAverageDistance(dataNodes, properties, normalization) { var sum = 0, n = nodes.length; for (var i = 0; i < n; i++) { var sumNode = 0; for (var j = 0; j < n; j++) { if (i !== j) { sumNode += distanceFunction(nodes[i], nodes[j], properties, normalization); // console.log(sumNode); } } sum += sumNode / (n - 1); } return sum / n; }