import {pointOnCircle, takeSampleFrom} from "./helpers"; import {placeNearToNearestNeighbour} from "./interpCommon"; /** * Perform interpolation where the near neighbour is estimated by pivot-based searching. * - Pre-processing: assign random samples as pivots, * put the others in each pivot's bucket. * ie. non-pivot sample X may be in * - bucket 3 of pivot A, * - bucket 1 of pivot B, * - bucket 5 of pivot C, * all at the same time * For each point to be interpolated: * - Phase 1: for each pivot: compare distance against the pivot * compare against other points in the same bucket of that pivot * note down the nearest neighbour found * - Phase 2 and 3 are passed onto placeNearToNearestNeighbour * @param {list} sampleSet - nodes already plotted on the 2D graph * @param {list} remainderSet - nodes to be interpolated onto the graph * @param {function} distanceFn - f(nodex, nodey) that calculate high-dimensional * distance between 2 nodes * @param {number} endingIts - for phase 3, how many iterations to refine the * placement of each interpolated point */ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIts) { // Pivot based parent finding let numBuckets = Math.floor(Math.sqrt(sampleSet.length)); let numNonPivots = sampleSet.length - numPivots; let sets = takeSampleFrom(sampleSet, numPivots); let pivots = sets.sample; let nonPivotSamples = sets.remainder; let pivotsBuckets = []; // [ For each Pivot:[For each bucket:[each point in bucket]] ] for (let i = 0; i < numPivots; i++) { pivotsBuckets[i] = []; for (let j = 0; j < numBuckets; j++) { pivotsBuckets[i][j] = []; } } // Pre-calculate distance between each non-pivot sample to each pivot // At the same time, determine the bucket width for each pivot based on furthest non-pivot sample let distCache = []; // [ For each non-pivot sample:[For each Pivot: distance] ] let bucketWidths = []; // [ For each Pivot: width of each bucket ] for (let i = 0; i < nonPivotSamples.length; i++) distCache[i] = []; for (let j = 0; j < numPivots; j++) { let pivot = pivots[j]; let maxDist = -1; for (let i = 0; i < numNonPivots; i++) { let sample = nonPivotSamples[i]; distCache[i][j] = distanceFn(pivot, sample); if (distCache[i][j] > maxDist) maxDist = distCache[i][j]; } bucketWidths.push(maxDist / numBuckets); } // Put samples (pivot not included) into buckets for (let j = 0; j < numPivots; j++) { let bucketWidth = bucketWidths[j]; for (let i = 0; i < numNonPivots; i++) { let sample = nonPivotSamples[i]; let bucketNumber = Math.floor(distCache[i][j] / bucketWidth); if (bucketNumber >= numBuckets) { bucketNumber = numBuckets - 1; } else if (bucketNumber < 0) { // Should never be negative anyway bucketNumber = 0; } pivotsBuckets[j][bucketNumber].push(sample); } } // --------------------------------------------------------------------- let sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample; //Plot each of the remainder nodes for (let node of remainderSet) { let sampleSubsetDistanceCache = [], minDist, nearSample; // Pivot based parent search for (let p = 0; p < numPivots; p++) { let pivot = pivots[p]; let bucketWidth = bucketWidths[p]; let dist = distanceFn(node, pivot); let index = sampleSubset.indexOf(pivot); if (index !== -1) { sampleSubsetDistanceCache[index] = dist; } if (minDist === undefined || dist < minDist){ minDist = dist; nearSample = pivot; } let bucketNumber = Math.floor(dist / bucketWidth); if (bucketNumber >= numBuckets) { bucketNumber = numBuckets - 1; } else if (bucketNumber < 0) { // Should never be negative anyway bucketNumber = 0; } for (let candidateNode of pivotsBuckets[p][bucketNumber]) { let index = sampleSubset.indexOf(candidateNode); if (index !== -1 && sampleSubsetDistanceCache[index] !== undefined) dist = sampleSubsetDistanceCache[index] else { dist = distanceFn(candidateNode, node); if (index !== -1) sampleSubsetDistanceCache[index] = dist; } if (dist < minDist){ minDist = dist; nearSample = candidateNode; } } } // Fill in holes in cache for (let k = 0; k < sampleSubset.length; k++) { if (sampleSubsetDistanceCache[k] === undefined) sampleSubsetDistanceCache[k] = distanceFn(node, sampleSubset[k]); } placeNearToNearestNeighbour(node, nearSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts); } }