22 Commits

Author SHA1 Message Date
Pitchaya Boonsarngsuk
fa5d34f96e แก้ เผลอคอมเมนต์เกิน 2018-03-22 16:53:39 +00:00
Pitchaya Boonsarngsuk
7c2900653e แก้ coding style ภาค 12 2018-03-22 16:47:10 +00:00
Pitchaya Boonsarngsuk
d59e4066d3 แก้ coding style ภาค 11 2018-03-22 16:44:57 +00:00
Pitchaya Boonsarngsuk
7b322b3ea8 แก้ตัวปิดบรรทัด 2018-03-22 16:42:28 +00:00
Pitchaya Boonsarngsuk
b2f5993513 แก้ coding style ภาค 9 (reverted from commit 400eab7e80) 2018-03-22 16:40:35 +00:00
Pitchaya Boonsarngsuk
cd0f3687cb แก้ coding style ภาค 10 2018-03-22 16:40:27 +00:00
Pitchaya Boonsarngsuk
400eab7e80 แก้ coding style ภาค 9 2018-03-22 16:40:14 +00:00
Pitchaya Boonsarngsuk
294cc7724e เพิ่ม script eslint fix 2018-03-22 16:36:27 +00:00
Pitchaya Boonsarngsuk
0d1fa385f8 แก้ coding style ภาค 8 2018-03-22 16:35:48 +00:00
Pitchaya Boonsarngsuk
93af0e646a แก้ coding style ภาค 7 2018-03-22 16:35:00 +00:00
Pitchaya Boonsarngsuk
684878b1fd แก้ coding style ภาค 6 2018-03-22 16:30:41 +00:00
Pitchaya Boonsarngsuk
21ee710468 แก้ coding style ภาค 5 2018-03-22 16:29:10 +00:00
Pitchaya Boonsarngsuk
8e34697d89 แก้ coding style ภาค 4 2018-03-22 16:22:43 +00:00
Pitchaya Boonsarngsuk
f3a6656c8f แก้ coding style ภาค 3 2018-03-22 16:17:48 +00:00
Pitchaya Boonsarngsuk
0cdd927444 แก้ coding style ภาค 2 2018-03-22 16:12:25 +00:00
Pitchaya Boonsarngsuk
2256af7448 แก้ coding style 2018-03-22 16:02:45 +00:00
Pitchaya Boonsarngsuk
b601af68b4 แก้ชื่อตัวแปล 2018-03-22 15:49:22 +00:00
Pitchaya Boonsarngsuk
f316d2755a แก้วงเล็บ 2018-03-22 15:48:30 +00:00
Pitchaya Boonsarngsuk
d31951fa85 Eslint allow console 2018-03-22 15:41:44 +00:00
Pitchaya Boonsarngsuk
7c1886dcc6 Eslint ใช้ ES6 2018-03-22 15:33:16 +00:00
Pitchaya Boonsarngsuk
66da3eb15b Add eslint run script 2018-03-22 15:32:09 +00:00
Pitchaya Boonsarngsuk
6a46342afd เพิ่ม eslint 2018-03-22 15:24:45 +00:00
31 changed files with 1502 additions and 1500 deletions

19
.eslintrc Normal file
View File

@@ -0,0 +1,19 @@
parserOptions:
sourceType: module
extends:
"standard"
rules:
no-cond-assign: 0
no-console: 0
semi:
- error
- always
no-return-assign: 0
one-var: 0
env:
es6: true
globals:
console: false
performance: false

View File

@@ -1,10 +1,10 @@
/**
* Initialize the hybrid layout algorithm and start simulation.
*/
function startHybridSimulation() {
console.log("startHybridSimulation");
function startHybridSimulation () {
console.log('startHybridSimulation');
springForce = false;
d3.selectAll(".nodes").remove();
d3.selectAll('.nodes').remove();
manualStop = false;
simulation.stop();
p1 = performance.now();
@@ -17,33 +17,33 @@ function startHybridSimulation() {
.neighbourSize(NEIGHBOUR_SIZE)
.sampleSize(SAMPLE_SIZE)
.stableVelocity(0) // Change here
.distance(distance)
.distance(distance);
let forceFull = d3.forceNeighbourSampling()
.neighbourSize(FULL_NEIGHBOUR_SIZE)
.sampleSize(FULL_SAMPLE_SIZE)
.stableVelocity(0) // Change here
.distance(distance)
.distance(distance);
let hybridSimulation = d3.hybridSimulation(simulation, forceSample, forceFull)
.sampleIterations(ITERATIONS)
.fullIterations(FULL_ITERATIONS)
.numPivots(PIVOTS ? NUM_PIVOTS:-1)
.numPivots(PIVOTS ? NUM_PIVOTS : -1)
.interpFindTuneIts(INTERP_ENDING_ITS)
.interpDistanceFn(distance)
.on("sampleTick", ticked)
.on("fullTick", ticked)
.on("startInterp", startedFull)
.on("end", ended);
.on('sampleTick', ticked)
.on('fullTick', ticked)
.on('startInterp', startedFull)
.on('end', ended);
let sample = hybridSimulation.subSet();
addNodesToDOM(sample);
hybridSimulation.restart();
function startedFull() {
console.log("startedFull");
d3.selectAll(".nodes").remove();
function startedFull () {
console.log('startedFull');
d3.selectAll('.nodes').remove();
addNodesToDOM(nodes);
}
}

View File

@@ -1,8 +1,8 @@
/**
* Initialize the link force algorithm and start simulation.
*/
function startLinkSimulation() {
console.log("startLinkSimulation")
function startLinkSimulation () {
console.log('startLinkSimulation');
springForce = false;
alreadyRanIterations = 0;
manualStop = true;
@@ -17,13 +17,12 @@ function startLinkSimulation() {
})
.stableVelocity(0) // Change here
.onStableVelo(ended);
}
else {
for (i = nodes.length-1; i >= 1; i--) {
for (j = i-1; j >= 0; j--) {
} else {
for (i = nodes.length - 1; i >= 1; i--) {
for (j = i - 1; j >= 0; j--) {
links.push({
source: nodes[i],
target: nodes[j],
target: nodes[j]
});
}
}
@@ -51,9 +50,9 @@ function startLinkSimulation() {
simulation
.alphaDecay(0)
.alpha(1)
.on("tick", ticked)
.on("end", ended)
//.velocityDecay(0.8)
.force(forceName,force)
.on('tick', ticked)
.on('end', ended)
// .velocityDecay(0.8)
.force(forceName, force)
.restart();
}

View File

@@ -1,9 +1,9 @@
/**
* Initialize the Chalmers' 1996 algorithm and start simulation.
*/
function startNeighbourSamplingSimulation() {
console.log("startNeighbourSamplingSimulation");
//springForce = true;
function startNeighbourSamplingSimulation () {
console.log('startNeighbourSamplingSimulation');
// springForce = true;
alreadyRanIterations = 0;
manualStop = true;
simulation.stop();
@@ -21,8 +21,8 @@ function startNeighbourSamplingSimulation() {
simulation
.alphaDecay(0)
.alpha(1)
.on("tick", ticked)
.on("end", ended)
.on('tick', ticked)
.on('end', ended)
.force(forceName, force);
// Restart the simulation.
simulation.restart();

View File

@@ -1,7 +1,7 @@
/**
* Initialize the t-SNE algorithm and start simulation.
*/
function starttSNE() {
function starttSNE () {
springForce = false;
simulation.stop();
p1 = performance.now();
@@ -25,20 +25,20 @@ function starttSNE() {
/**
* Initialize the Barnes-Hut algorithm and start simulation.
*/
function startBarnesHutSimulation() {
console.log("startBarnesHutSimulation")
function startBarnesHutSimulation () {
console.log('startBarnesHutSimulation');
alreadyRanIterations = 0;
manualStop = false;
springForce = false;
p1 = performance.now();
simulation.alphaDecay(1 - Math.pow(0.001, 1 / ITERATIONS))
.on("tick", ticked)
.on("end", ended)
.on('tick', ticked)
.on('end', ended)
.force(forceName, d3.forceBarnesHut()
// The distance function that will be used to calculate distances
// between nodes.
.distance(function(s, t) { return distanceFunction(s, t, props, norm); }));
.distance(function (s, t) { return distanceFunction(s, t, props, norm); }));
// Restart the simulation.
simulation.alpha(1).restart();
}

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateCosineSimilarity(source, target, properties, normArgs) {
function calculateCosineSimilarity (source, target, properties, normArgs) {
var numerator = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];
@@ -26,7 +26,7 @@ function calculateCosineSimilarity(source, target, properties, normArgs) {
return Math.abs(numerator / denominator);
}
function squareRooted(node, properties, normArgs) {
function squareRooted (node, properties, normArgs) {
var sum = 0.0;
for (var i = 0, s; i < properties.length; i++) {

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateDiceDissimilarity(source, target, properties, normArgs) {
function calculateDiceDissimilarity (source, target, properties, normArgs) {
var notShared = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -6,7 +6,7 @@
* @param {object} normArgs - the normalization arguments.
* @return {number} the distance between source and target nodes.
*/
function calculateDistance(source, target, properties, normArgs) {
function calculateDistance (source, target, properties, normArgs) {
var val1 = 0.0, val2 = 0.0,
sumDiff = 0.0,
ordDiff = 1.0,
@@ -19,8 +19,8 @@ function calculateDistance(source, target, properties, normArgs) {
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (source.hasOwnProperty(property) && target.hasOwnProperty(property)
&& property.toLowerCase() !== "index" && property.toLowerCase() !== "type") {
if (source.hasOwnProperty(property) && target.hasOwnProperty(property) &&
property.toLowerCase() !== 'index' && property.toLowerCase() !== 'type') {
var s = source[property],
t = target[property];
@@ -32,7 +32,7 @@ function calculateDistance(source, target, properties, normArgs) {
val1 = (val1 - average[i]) / (st_dev[i] * sigma[i]);
val2 = (val2 - average[i]) / (st_dev[i] * sigma[i]);
}
sumDiff += (val1-val2) * (val1-val2);
sumDiff += (val1 - val2) * (val1 - val2);
cols++;
// Comparing strings
} else if (/[a-zA-Z]/.test(s) && /[a-zA-Z]/.test(t) && s === t) {
@@ -42,9 +42,8 @@ function calculateDistance(source, target, properties, normArgs) {
// Comparing Dates
var parsedDateS = Date.parse(s);
var parsedDateT = Date.parse(t);
if (isNaN(s) && !isNaN(parsedDateS)
&& isNaN(t) && !isNaN(parsedDateT)) {
if (isNaN(s) && !isNaN(parsedDateS) &&
isNaN(t) && !isNaN(parsedDateT)) {
val1 = parsedDateS.valueOf(),
val2 = parsedDateT.valueOf();
@@ -52,7 +51,7 @@ function calculateDistance(source, target, properties, normArgs) {
val1 = (val1 - average[i]) / (st_dev[i] * sigma[i]);
val2 = (val2 - average[i]) / (st_dev[i] * sigma[i]);
}
sumDiff += (val1-val2) * (val1-val2);
sumDiff += (val1 - val2) * (val1 - val2);
cols++;
}
}
@@ -62,9 +61,9 @@ function calculateDistance(source, target, properties, normArgs) {
sumDiff *= ordDiff;
if (cols > 0) {
sumDiff *= properties.length/cols;
sumDiff *= properties.length / cols;
}
//console.log(sumDiff);
// console.log(sumDiff);
return sumDiff;
}

View File

@@ -6,11 +6,11 @@
* @param {node} target
* @return {number} the distance between source and target nodes.
*/
function calculateDistancePoker(source, target) {
function calculateDistancePoker (source, target) {
var sumDiff = 0.0,
ordDiff = 1.0,
ORD_FACTOR = 1.5,
cards = ["C1", "C2", "C3", "C4", "C5"],
cards = ['C1', 'C2', 'C3', 'C4', 'C5'],
cols = 0;
// Iterate through cards
@@ -20,19 +20,19 @@ function calculateDistancePoker(source, target) {
var s = parseInt(source[card]),
t = parseInt(target[card]);
// Calculate the squared difference.
sumDiff += (s-t) * (s-t);
sumDiff += (s - t) * (s - t);
}
}
// Class of poker hands describes the similarities the best
// so give it more priority than checking the differences between cards.
if (source.hasOwnProperty("CLASS") && target.hasOwnProperty("CLASS")) {
var s = parseInt(source["CLASS"]),
t = parseInt(target["CLASS"]);
if (source.hasOwnProperty('CLASS') && target.hasOwnProperty('CLASS')) {
var s = parseInt(source['CLASS']),
t = parseInt(target['CLASS']);
// If classes differ, then scale them by a factor.
if (s !== t) {
ordDiff *= (ORD_FACTOR * (Math.abs(s-t)))
ordDiff *= (ORD_FACTOR * (Math.abs(s - t)));
}
}

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateEuclideanDistance(source, target, properties, normArgs) {
function calculateEuclideanDistance (source, target, properties, normArgs) {
var sumDiff = 0.0;
// console.log(normArgs);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday" && property.toLowerCase() !== "type") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday' && property.toLowerCase() !== 'type') {
var s = source[property],
t = target[property];

View File

@@ -5,7 +5,7 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateEuclideanDistanceTSNE(source, target, properties, normArgs) {
function calculateEuclideanDistanceTSNE (source, target, properties, normArgs) {
var dotProduct = 0.0,
sumX = 0.0,
sumY = 0.0;
@@ -15,7 +15,7 @@ function calculateEuclideanDistanceTSNE(source, target, properties, normArgs) {
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (source.hasOwnProperty(property) && target.hasOwnProperty(property) &&
property.toLowerCase() !== "class") {
property.toLowerCase() !== 'class') {
var s = source[property],
t = target[property];

View File

@@ -5,14 +5,14 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateJaccardDissimilarity(source, target, properties, normArgs) {
function calculateJaccardDissimilarity (source, target, properties, normArgs) {
var notShared = 0.0;
// console.log(properties);
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -5,7 +5,7 @@
* @param {array} properties - the properties of the nodes.
* @return {number} the distance between source and target nodes.
*/
function calculateManhattanDistance(source, target, properties, normArgs) {
function calculateManhattanDistance (source, target, properties, normArgs) {
var sum = 0.0,
cols = 0;
@@ -13,7 +13,7 @@ function calculateManhattanDistance(source, target, properties, normArgs) {
// Iterate through every column of data
for (var i = 0; i < properties.length; i++) {
property = properties[i];
if (property.toLowerCase() !== "class" && property.toLowerCase() !== "app" && property.toLowerCase() !== "user" && property.toLowerCase() !== "weekday") {
if (property.toLowerCase() !== 'class' && property.toLowerCase() !== 'app' && property.toLowerCase() !== 'user' && property.toLowerCase() !== 'weekday') {
var s = source[property],
t = target[property];

View File

@@ -3,7 +3,7 @@
* @param {array} nodes
* @return {object} that contains the normalization parameters.
*/
function calculateNormalization(nodes) {
function calculateNormalization (nodes) {
var STANDARD_DEV = 2.0,
properties = Object.keys(nodes[0]),
sums = calculateSums(nodes, properties),
@@ -23,10 +23,8 @@ function calculateNormalization(nodes) {
};
}
function standardDevation(nodes, properties, avg) {
var stDev = new Array(properties.length).fill(0)
function standardDevation (nodes, properties, avg) {
var stDev = new Array(properties.length).fill(0);
for (var i = 0; i < properties.length; i++) {
var sum = 0;
@@ -48,11 +46,10 @@ function standardDevation(nodes, properties, avg) {
sum += Math.pow(val - propAvg, 2);
});
stDev[i] = Math.sqrt(sum/nodes.length);
stDev[i] = Math.sqrt(sum / nodes.length);
}
return stDev;
}
// Calculate the sum of values and the squared sum
@@ -63,7 +60,7 @@ function standardDevation(nodes, properties, avg) {
* @return {object} that contains arrays with sum of values
* and the squared sums.
*/
function calculateSums(nodes, properties) {
function calculateSums (nodes, properties) {
var sumOfValues = new Array(properties.length).fill(0),
sumOfSquares = new Array(properties.length).fill(0);

View File

@@ -3,6 +3,6 @@
* @param {object} n - object to check.
* @return {Boolean} true, if it is a number, false otherwise.
*/
function isNumeric(n) {
function isNumeric (n) {
return !isNaN(parseFloat(n)) && isFinite(n);
}

View File

@@ -2,27 +2,27 @@
var width = +document.getElementById('svg').clientWidth,
height = +document.getElementById('svg').clientHeight;
var svg = d3.select("svg")
.call(d3.zoom().scaleExtent([0.0001, 1000000]).on("zoom", function () {
svg.attr("transform", d3.event.transform);
var svg = d3.select('svg')
.call(d3.zoom().scaleExtent([0.0001, 1000000]).on('zoom', function () {
svg.attr('transform', d3.event.transform);
}))
.append("g");
.append('g');
var div = d3.select("body").append("div")
.attr("class", "tooltip")
.style("opacity", 0);
var div = d3.select('body').append('div')
.attr('class', 'tooltip')
.style('opacity', 0);
var brush = d3.brush()
.extent([[-9999999, -9999999], [9999999, 9999999]])
.on("end", brushEnded);
.on('end', brushEnded);
svg.append("g")
.attr("class", "brush")
svg.append('g')
.attr('class', 'brush')
.call(brush);
//var intercom = Intercom.getInstance();
// var intercom = Intercom.getInstance();
//intercom.on("select", unSelectNodes);
// intercom.on("select", unSelectNodes);
var nodes, // as in Data points
node, // as in SVG object that have all small circles on screen
@@ -35,10 +35,10 @@ var nodes, // as in Data points
simulation,
velocities = [],
rendering = true, // Rendering during the execution.
forceName = "forces",
forceName = 'forces',
springForce = false,
tooltipWidth = 0,
fileName = "",
fileName = '',
selectedData,
clickedIndex = -1,
paused = false,
@@ -57,7 +57,7 @@ var MULTIPLIER = 50,
ITERATIONS = 300,
FULL_ITERATIONS = 20,
NODE_SIZE = 10,
COLOR_ATTRIBUTE = "",
COLOR_ATTRIBUTE = '',
FULL_NEIGHBOUR_SIZE = 10,
FULL_SAMPLE_SIZE = 10,
INTERP_ENDING_ITS = 20;
@@ -65,19 +65,19 @@ var MULTIPLIER = 50,
// Create a color scheme for a range of numbers.
var color = d3.scaleOrdinal(d3.schemeCategory10);
$(document).ready(function() {
$(document).ready(function () {
distanceFunction = calculateDistance;
d3.select('#startSimulation').on('click', startHybridSimulation);
$("#HLParameters").show();
$('#HLParameters').show();
});
/**
* Parse the data from the provided csv file using Papa Parse library
* @param {file} evt - csv file.
*/
function parseFile(evt) {
function parseFile (evt) {
// Clear the previous nodes
d3.selectAll(".nodes").remove();
d3.selectAll('.nodes').remove();
springForce = false;
fileName = evt.target.files[0].name;
@@ -96,7 +96,7 @@ function parseFile(evt) {
* @param {array} data
* @param {object} error
*/
function processData(data, error) {
function processData (data, error) {
if (error) throw error.message;
nodes = data;
@@ -107,18 +107,17 @@ function processData(data, error) {
norm = calculateNormalization(nodes);
props = Object.keys(nodes[0]); // Properties to consider by distance fn
COLOR_ATTRIBUTE = props[props.length-1];
COLOR_ATTRIBUTE = props[props.length - 1];
var opts = document.getElementById('color_attr').options;
props.forEach(function (d) {
opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE) ? true : false));
opts.add(new Option(d, d, (d === COLOR_ATTRIBUTE)));
});
opts.selectedIndex = props.length-1;
//props.pop(); //Hide Iris index / last column from the distance function
opts.selectedIndex = props.length - 1;
// props.pop(); //Hide Iris index / last column from the distance function
//Put the nodes at (0,0)
// Put the nodes at (0,0)
nodes.forEach(function (d) {
d.x = 0;
d.y = 0;
@@ -134,101 +133,99 @@ function processData(data, error) {
ticked();
};
function addNodesToDOM(data) {
node = svg.append("g")
.attr("class", "nodes")
.selectAll("circle")
function addNodesToDOM (data) {
node = svg.append('g')
.attr('class', 'nodes')
.selectAll('circle')
.data(data)
.enter().append("circle")
.attr("r", NODE_SIZE)
.attr("transform", "translate(" + width / 2 + "," + height / 2 + ")")
.enter().append('circle')
.attr('r', NODE_SIZE)
.attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')')
// Color code the data points by a property (for Poker Hands,
// it is a CLASS property).
.attr("fill", function (d) {
.attr('fill', function (d) {
return color(d[COLOR_ATTRIBUTE]);
})
.on("mouseover", function (d) {
.on('mouseover', function (d) {
div.transition()
.duration(200)
.style("opacity", .9);
.style('opacity', 0.9);
div.html(formatTooltip(d))
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - (15 * props.length)) + "px")
.style("width", (6 * tooltipWidth) + "px")
.style("height", (14 * props.length) + "px");
.style('left', (d3.event.pageX) + 'px')
.style('top', (d3.event.pageY - (15 * props.length)) + 'px')
.style('width', (6 * tooltipWidth) + 'px')
.style('height', (14 * props.length) + 'px');
highlightOnHover(d[COLOR_ATTRIBUTE]);
})
.on("mouseout", function (d) {
.on('mouseout', function (d) {
div.transition()
.duration(500)
.style("opacity", 0);
node.attr("opacity", 1);
.style('opacity', 0);
node.attr('opacity', 1);
})
.on("click", function (d) {
console.log("click", clickedIndex);
.on('click', function (d) {
console.log('click', clickedIndex);
if (clickedIndex !== d.index) {
if (springForce) {
highlightNeighbours(Array.from(simulation.force(forceName).nodeNeighbours(d.index).keys()));
clickedIndex = d.index;
}
} else {
node.attr("r", NODE_SIZE).attr("stroke-width", 0);
node.attr('r', NODE_SIZE).attr('stroke-width', 0);
clickedIndex = -1;
}
});
if (selectedData)
unSelectNodes(selectedData);
if (selectedData) { unSelectNodes(selectedData); }
}
function ticked() {
function ticked () {
alreadyRanIterations++;
// If rendering is selected, then draw at every iteration.
if (rendering === true) {
node // Each sub-circle in the SVG, update cx and cy
.attr("cx", function (d) {
return d.x*MULTIPLIER;
.attr('cx', function (d) {
return d.x * MULTIPLIER;
})
.attr("cy", function (d) {
return d.y*MULTIPLIER;
.attr('cy', function (d) {
return d.y * MULTIPLIER;
});
}
// Legacy: Emit the distribution data to allow the drawing of the bar graph
//if (springForce) {
// if (springForce) {
// intercom.emit("passedData", simulation.force(forceName).distributionData());
//}
if(manualStop && alreadyRanIterations == ITERATIONS) {
// }
if (manualStop && alreadyRanIterations === ITERATIONS) {
ended();
}
}
function ended() {
function ended () {
simulation.stop();
simulation.force(forceName, null);
if (rendering !== true) { // Never drawn anything before? Now it's time.
node
.attr("cx", function (d) {
return d.x*MULTIPLIER;
.attr('cx', function (d) {
return d.x * MULTIPLIER;
})
.attr("cy", function (d) {
return d.y*MULTIPLIER;
.attr('cy', function (d) {
return d.y * MULTIPLIER;
});
}
if (p1 !== 0) {
// Performance time measurement
p2 = performance.now();
console.log("Execution time: " + (p2 - p1));
console.log('Execution time: ' + (p2 - p1));
p1 = 0;
p2 = 0;
}
}
function brushEnded() {
function brushEnded () {
var s = d3.event.selection,
results = [];
if (s) {
var x0 = s[0][0] - width / 2,
y0 = s[0][1] - height / 2,
x1 = s[1][0] - width / 2,
@@ -245,24 +242,23 @@ function brushEnded() {
results = sel.map(function (a) { return a.index; });
}
//intercom.emit("select", { name: fileName, indices: results });
// intercom.emit("select", { name: fileName, indices: results });
d3.select(".brush").call(brush.move, null);
d3.select('.brush').call(brush.move, null);
}
}
/**
* Format the tooltip for the data
* @param {*} node
*/
function formatTooltip(node) {
var textString = "",
temp = "";
function formatTooltip (node) {
var textString = '',
temp = '';
tooltipWidth = 0;
props.forEach(function (element) {
temp = element + ": " + node[element] + "<br/>";
temp = element + ': ' + node[element] + '<br/>';
textString += temp;
if (temp.length > tooltipWidth) {
tooltipWidth = temp.length;
@@ -274,7 +270,7 @@ function formatTooltip(node) {
/**
* Halt the execution.
*/
function stopSimulation() {
function stopSimulation () {
simulation.stop();
if (typeof hybridSimulation !== 'undefined') {
hybridSimulation.stop();
@@ -286,8 +282,8 @@ function stopSimulation() {
* @param {array} array
* @return {number} the mean of the array.
*/
function getAverage(array) {
console.log("getAverage", array);
function getAverage (array) {
console.log('getAverage', array);
var total = 0;
for (var i = 0; i < array.length; i++) {
total += array[i];
@@ -299,11 +295,11 @@ function getAverage(array) {
* Deselect the nodes to match the selection from other window.
* @param {*} data
*/
function unSelectNodes(data) {
function unSelectNodes (data) {
selectedData = data;
if (fileName === data.name && nodes) {
node
.classed("notSelected", function (d) {
.classed('notSelected', function (d) {
if (data.indices.indexOf(d.index) < 0) {
return true;
}
@@ -312,35 +308,33 @@ function unSelectNodes(data) {
}
}
/**
* Highlight the neighbours for neighbour and sampling algorithm
* @param {*} indices
*/
function highlightNeighbours(indices) {
function highlightNeighbours (indices) {
node
.attr("r", function (d) {
.attr('r', function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 2;
}
return NODE_SIZE;
})
.attr("stroke-width", function (d) {
.attr('stroke-width', function (d) {
if (indices.indexOf(d.index) >= 0) {
return NODE_SIZE * 0.2 + "px";
return NODE_SIZE * 0.2 + 'px';
}
return "0px";
return '0px';
})
.attr("stroke", "white");
.attr('stroke', 'white');
}
/**
* Highlight all the nodes with the same class on hover
* @param {*} highlighValue
*/
function highlightOnHover(highlighValue) {
node.attr("opacity", function (d) {
function highlightOnHover (highlighValue) {
node.attr('opacity', function (d) {
return (highlighValue === d[COLOR_ATTRIBUTE]) ? 1 : 0.3;
});
}
@@ -348,13 +342,12 @@ function highlightOnHover(highlighValue) {
/**
* Color the nodes according to given attribute.
*/
function colorToAttribute() {
node.attr("fill", function (d) {
return color(d[COLOR_ATTRIBUTE])
function colorToAttribute () {
node.attr('fill', function (d) {
return color(d[COLOR_ATTRIBUTE]);
});
}
/**
* Update the distance range.
@@ -364,26 +357,24 @@ function updateDistanceRange() {
}
}
/**
* Implemented pause/resume functionality
*/
function pauseUnPause() {
function pauseUnPause () {
if (simulation) {
if (paused) {
simulation.force(forceName);
simulation.restart();
d3.select("#pauseButton").text("Pause");
d3.select('#pauseButton').text('Pause');
paused = false;
} else {
simulation.stop();
d3.select("#pauseButton").text("Resume");
d3.select('#pauseButton').text('Resume');
paused = true;
}
}
}
/**
* Average distances for each node.
* @param {*} dataNodes
@@ -406,4 +397,4 @@ function calculateAverageDistance(dataNodes, properties, normalization) {
}
return sum / n;
}*/
} */

View File

@@ -1,17 +1,17 @@
export {default as forceNeighbourSampling}
from "./src/neighbourSampling";
from './src/neighbourSampling';
export { default as forceBarnesHut}
from "./src/barnesHut";
export {default as forceBarnesHut}
from './src/barnesHut';
export { default as tSNE}
from "./src/t-sne";
export {default as tSNE}
from './src/t-sne';
export { default as forceLinkCompleteGraph}
from "./src/link";
export {default as forceLinkCompleteGraph}
from './src/link';
export { default as hybridSimulation}
from "./src/hybridSimulation";
export {default as hybridSimulation}
from './src/hybridSimulation';
export { getStress as calculateStress }
from "./src/stress";
export {getStress as calculateStress}
from './src/stress';

View File

@@ -12,11 +12,19 @@
"main": "build/d3-spring-model.js",
"jsnext:main": "index",
"scripts": {
"lintcheck": "eslint index.js src",
"lintfix": "eslint index.js src --fix",
"build": "rm -rf build && mkdir build && rollup -g d3-force:d3,d3-dispatch:d3,d3-quadtree:d3,d3-collection:d3 -f umd -n d3 -o build/d3-spring-model.js -- index.js",
"minify": "node_modules/uglify-es/bin/uglifyjs build/d3-spring-model.js -c -m -o build/d3-spring-model.min.js",
"zip": "zip -j build/d3-spring-model.zip -- LICENSE README.md build/d3-spring-model.js build/d3-spring-model.min.js"
},
"devDependencies": {
"eslint": "4",
"eslint-config-standard": "^11.0.0",
"eslint-plugin-import": "^2.9.0",
"eslint-plugin-node": "^6.0.1",
"eslint-plugin-promise": "^3.7.0",
"eslint-plugin-standard": "^3.0.1",
"rollup": "0.36",
"uglify-js": "git+https://github.com/mishoo/UglifyJS2.git#harmony"
},

View File

@@ -1,7 +1,7 @@
import constant from "./constant";
import jiggle from "./jiggle";
import {x, y} from "./xy";
import {quadtree} from "d3-quadtree";
import constant from './constant';
import jiggle from './jiggle';
import {x, y} from './xy';
import {quadtree} from 'd3-quadtree';
/**
* The refinement of the existing Barnes-Hut implementation in D3
@@ -12,7 +12,7 @@ import {quadtree} from "d3-quadtree";
* The check to see if the nodes are far away was also changed to the one described in original Barnes-Hut paper.
* @return {force} calculated forces.
*/
export default function() {
export default function () {
var nodes,
node,
alpha,
@@ -25,10 +25,10 @@ export default function() {
* @param {number} _ - controls the stopping of the
* particle simulations.
*/
function force(_) {
function force (_) {
var i, n = nodes.length, tree = quadtree(nodes, x, y).visitAfter(accumulate);
for (alpha = _, i = 0; i < n; ++i) {
node = nodes[i], tree.visit(apply);
node = nodes[i]; tree.visit(apply);
}
}
@@ -38,7 +38,7 @@ export default function() {
* nodes accumulate forces from coincident quadrants.
* @param {quadrant} quad - node representing the quadrant in quadtree.
*/
function accumulate(quad) {
function accumulate (quad) {
var q, d, children = [];
// For internal nodes, accumulate forces from child quadrants.
@@ -52,10 +52,7 @@ export default function() {
quad.data = children[Math.floor(Math.random() * children.length)];
quad.x = quad.data.x;
quad.y = quad.data.y;
}
// For leaf nodes, accumulate forces from coincident quadrants.
else {
} else { // For leaf nodes, accumulate forces from coincident quadrants.
q = quad;
q.x = q.data.x;
q.y = q.data.y;
@@ -72,8 +69,7 @@ export default function() {
* @param {number} x2 - upper x bound of the node.
* @return {boolean} - true if the approximation was applied.
*/
function apply(quad, x1, _, x2) {
function apply (quad, x1, _, x2) {
var x = quad.data.x + quad.data.vx - node.x - node.vx,
y = quad.data.y + quad.data.vy - node.y - node.vy,
w = x2 - x1,
@@ -82,35 +78,34 @@ export default function() {
// Apply the Barnes-Hut approximation if possible.
// Limit forces for very close nodes; randomize direction if coincident.
if (w / l < theta) {
if (x === 0) x = jiggle(), l += x * x;
if (y === 0) y = jiggle(), l += y * y;
if (x === 0) { x = jiggle(); l += x * x; }
if (y === 0) { y = jiggle(); l += y * y; }
if (quad.data) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l, y *= l;
x *= l; y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
}
return true;
}
// Otherwise, process points directly.
else if (quad.length) return;
} else if (quad.length) return; // Otherwise, process points directly.
// Limit forces for very close nodes; randomize direction if coincident.
if (quad.data !== node || quad.next) {
if (x === 0) x = jiggle(), l += x * x;
if (y === 0) y = jiggle(), l += y * y;
if (x === 0) { x = jiggle(); l += x * x; }
if (y === 0) { y = jiggle(); l += y * y; }
}
do if (quad.data !== node) {
do {
if (quad.data !== node) {
l = (l - +distance(node, quad.data)) / l * alpha;
x *= l, y *= l;
x *= l; y *= l;
quad.data.vx -= x;
quad.data.vy -= y;
node.vx += x;
node.vy += y;
}
} while (quad = quad.next);
}
@@ -120,37 +115,37 @@ export default function() {
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress() {
function getStress () {
var totalDiffSq = 0, totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i], target = nodes[j];
realDist = Math.hypot(target.x-source.x, target.y-source.y);
source = nodes[i]; target = nodes[j];
realDist = Math.hypot(target.x - source.x, target.y - source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist-highDist, 2);
totalDiffSq += Math.pow(realDist - highDist, 2);
totalHighDistSq += highDist * highDist;
}
}
}
return Math.sqrt(totalDiffSq/totalHighDistSq);
return Math.sqrt(totalDiffSq / totalHighDistSq);
}
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function(_) {
force.initialize = function (_) {
nodes = _;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.theta = function(_) {
force.theta = function (_) {
return arguments.length ? (theta = _, force) : theta;
};
force.stress = function() {
force.stress = function () {
return getStress();
};

View File

@@ -1,8 +1,8 @@
/**
* @return a constant defined by x.
*/
export default function(x) {
return function() {
export default function (x) {
return function () {
return x;
};
}

View File

@@ -1,8 +1,8 @@
import {dispatch} from "d3-dispatch";
import constant from "./constant";
import interpBruteForce from "./interpolation/interpBruteForce";
import interpolationPivots from "./interpolation/interpolationPivots";
import {takeSampleFrom} from "./interpolation/helpers";
import {dispatch} from 'd3-dispatch';
import constant from './constant';
import interpBruteForce from './interpolation/interpBruteForce';
import interpolationPivots from './interpolation/interpolationPivots';
import {takeSampleFrom} from './interpolation/helpers';
/**
* An implementation of Chalmers, Morrison, and Ross' 2002 hybrid layout
@@ -36,28 +36,28 @@ export default function (sim, forceS, forceF) {
simulation = sim,
forceSample = forceS,
forceFull = forceF,
event = d3.dispatch("sampleTick", "fullTick", "startInterp", "end"),
event = dispatch('sampleTick', 'fullTick', 'startInterp', 'end'),
initAlready = false,
nodes,
alreadyRanIterations,
hybrid;
if(simulation != undefined) initSimulation();
if(forceS != undefined || forceF != undefined) initForces();
if (simulation !== undefined) initSimulation();
if (forceS !== undefined || forceF !== undefined) initForces();
// Performed on first run
function initialize() {
function initialize () {
initAlready = true;
alreadyRanIterations = 0;
simulation
.on("tick", sampleTick)
.on("end", sampleEnded)
.on('tick', sampleTick)
.on('end', sampleEnded)
.nodes(sample)
.force("Sample force", forceSample);
console.log("Initialized Simulation for Hybrid");
.force('Sample force', forceSample);
console.log('Initialized Simulation for Hybrid');
}
function initForces(){
function initForces () {
if (forceSample.onStableVelo) {
forceSample.onStableVelo(sampleEnded);
}
@@ -67,20 +67,21 @@ export default function (sim, forceS, forceF) {
}
// Set default value for interpDistanceFn if not been specified yet
if(interpDistanceFn === undefined) {
if(forceFull.distance == 'function')
if (interpDistanceFn === undefined) {
if (forceFull.distance === 'function') {
interpDistanceFn = forceFull.distance();
else
} else {
interpDistanceFn = constant(300);
}
}
}
function initSimulation(){
function initSimulation () {
nodes = simulation.nodes();
simulation
.stop()
.alphaDecay(0)
.alpha(1)
.alpha(1);
let sets = takeSampleFrom(nodes, Math.sqrt(nodes.length));
sample = sets.sample;
@@ -88,64 +89,64 @@ export default function (sim, forceS, forceF) {
}
// Sample simulation ticked 1 frame, keep track of number of iterations here.
function sampleTick() {
event.call("sampleTick");
if(alreadyRanIterations++ >= SAMPLE_ITERATIONS){
function sampleTick () {
event.call('sampleTick');
if (alreadyRanIterations++ >= SAMPLE_ITERATIONS) {
sampleEnded();
}
}
// Full simulation ticked 1 frame, keep track of number of iterations here.
function fullTick() {
event.call("fullTick");
if(alreadyRanIterations++ >= FULL_ITERATIONS){
function fullTick () {
event.call('fullTick');
if (alreadyRanIterations++ >= FULL_ITERATIONS) {
fullEnded();
}
}
function fullEnded() {
function fullEnded () {
simulation.stop();
initAlready = false;
simulation.force("Full force", null);
event.call("end");
simulation.force('Full force', null);
event.call('end');
}
function sampleEnded() {
function sampleEnded () {
simulation.stop();
simulation.force("Sample force", null);
simulation.force('Sample force', null);
// Reset velocity of all nodes
for (let i=sample.length-1; i>=0; i--){
sample[i].vx=0;
sample[i].vy=0;
for (let i = sample.length - 1; i >= 0; i--) {
sample[i].vx = 0;
sample[i].vy = 0;
}
event.call("startInterp");
if (NUM_PIVOTS>=1) {
event.call('startInterp');
if (NUM_PIVOTS >= 1) {
interpolationPivots(sample, remainder, NUM_PIVOTS, interpDistanceFn, INTERP_FINE_ITS);
} else {
interpBruteForce(sample, remainder, interpDistanceFn, INTERP_FINE_ITS);
}
event.call("fullTick");
event.call('fullTick');
alreadyRanIterations = 0;
simulation
.on("tick", null)
.on("end", null) // The ending condition should be iterations count
.on('tick', null)
.on('end', null) // The ending condition should be iterations count
.nodes(nodes);
if (FULL_ITERATIONS<1 || forceF === undefined || forceF === null) {
event.call("end");
if (FULL_ITERATIONS < 1 || forceF === undefined || forceF === null) {
event.call('end');
return;
}
simulation
.on("tick", fullTick)
.force("Full force", forceFull)
.on('tick', fullTick)
.force('Full force', forceFull)
.restart();
}
return hybrid = {
restart: function () {
if(!initAlready) initialize();
if (!initAlready) initialize();
simulation.restart();
return hybrid;
},
@@ -184,11 +185,11 @@ export default function (sim, forceS, forceF) {
},
interpDistanceFn: function (_) {
return arguments.length ? (interpDistanceFn = typeof _ === "function" ? _ : constant(+_), hybrid) : interpDistanceFn;
return arguments.length ? (interpDistanceFn = typeof _ === 'function' ? _ : constant(+_), hybrid) : interpDistanceFn;
},
simulation: function (_) {
return arguments.length ? (toInit = true, simulation = _, hybrid) : simulation;
return arguments.length ? (initAlready = false, simulation = _, hybrid) : simulation;
},
forceSample: function (_) {
@@ -197,7 +198,7 @@ export default function (sim, forceS, forceF) {
forceFull: function (_) {
return arguments.length ? (forceFull = _, initForces(), hybrid) : forceFull;
},
}
};
}

View File

@@ -8,7 +8,7 @@
sample is the list of selected objects while
remainder is the list of those unselected.
*/
export function takeSampleFrom(sourceList, amount) {
export function takeSampleFrom (sourceList, amount) {
let randElements = [],
max = sourceList.length,
swap = false;
@@ -18,16 +18,16 @@ export function takeSampleFrom(sourceList, amount) {
}
// If picking more than half of the entire set, random to pick the remainder instead
if (amount > Math.ceil(max/2)){
if (amount > Math.ceil(max / 2)) {
amount = max - amount;
swap = true;
}
for (let i = 0; i < amount; ++i) {
let rand = sourceList[Math.floor((Math.random() * max))];
let rand = sourceList[Math.floor(Math.random() * max)];
// Re-random until suitable value is found.
while (randElements.includes(rand)) {
rand = sourceList[Math.floor((Math.random() * max))];
rand = sourceList[Math.floor(Math.random() * max)];
}
randElements.push(rand);
}
@@ -35,13 +35,12 @@ export function takeSampleFrom(sourceList, amount) {
return !randElements.includes(obj);
});
if(swap) {
if (swap) {
return {
sample: remainder,
remainder: randElements
};
}
else {
} else {
return {
sample: randElements,
remainder: remainder
@@ -58,14 +57,14 @@ export function takeSampleFrom(sourceList, amount) {
* @param {number} r
* @return {object} - coordinate {x: number, y: number} of the point
*/
export function pointOnCircle(h, k, angle, r) {
export function pointOnCircle (h, k, angle, r) {
return {
x: h + r*Math.cos(toRadians(angle)),
y: k + r*Math.sin(toRadians(angle))
x: h + r * Math.cos(toRadians(angle)),
y: k + r * Math.sin(toRadians(angle))
};
}
function toRadians(degrees) {
function toRadians (degrees) {
return degrees * (Math.PI / 180);
}
@@ -80,7 +79,7 @@ function toRadians(degrees) {
that of samples.
* @return {number} - Sum of distances differences
*/
export function sumDistError(node, samples, realDistances) {
export function sumDistError (node, samples, realDistances) {
let total = 0.0;
for (let i = 0; i < samples.length; i++) {
let sample = samples[i];

View File

@@ -1,5 +1,5 @@
import {takeSampleFrom} from "./helpers";
import {placeNearToNearestNeighbour} from "./interpCommon";
import {takeSampleFrom} from './helpers';
import {placeNearToNearestNeighbour} from './interpCommon';
/**
* Perform interpolation where the "parent" node is found by brute-force.
@@ -18,19 +18,19 @@ import {placeNearToNearestNeighbour} from "./interpCommon";
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function(sampleSet, remainderSet, distanceFn, endingIts) {
export default function (sampleSet, remainderSet, distanceFn, endingIts) {
let
sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample,
sampleSubsetDistanceCache = [];
// For each datapoint "node" to be interpolated
for (let i = remainderSet.length-1; i>=0; i--) {
for (let i = remainderSet.length - 1; i >= 0; i--) {
let
node = remainderSet[i],
nearestSample, minDist, sample, dist, index;
// For each datapoint "sample" in the sample set
for (let j = sampleSet.length-1; j>=0; j--) {
for (let j = sampleSet.length - 1; j >= 0; j--) {
sample = sampleSet[j];
dist = distanceFn(node, sample);
if (nearestSample === undefined || dist < minDist) {
@@ -39,8 +39,7 @@ export default function(sampleSet, remainderSet, distanceFn, endingIts) {
}
index = sampleSubset.indexOf(sample);
if (index !== -1)
sampleSubsetDistanceCache[index] = dist;
if (index !== -1) { sampleSubsetDistanceCache[index] = dist; }
}
placeNearToNearestNeighbour(node, nearestSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);

View File

@@ -1,5 +1,5 @@
import {pointOnCircle, sumDistError} from "./helpers";
import jiggle from "../jiggle";
import {pointOnCircle, sumDistError} from './helpers';
import jiggle from '../jiggle';
/**
* Phase 2 and 3 of each node to be interpolated.
@@ -24,9 +24,9 @@ import jiggle from "../jiggle";
index must correspond to sampleSubset
* @param {Integer} endingIts - Number of iterations for phase 3
*/
export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleSubset, realDistances, endingIts) {
export function placeNearToNearestNeighbour (node, nearNeighbour, radius, sampleSubset, realDistances, endingIts) {
let
sumDistErrorByAngle = function(angle){
sumDistErrorByAngle = function (angle) {
return sumDistError(pointOnCircle(nearNeighbour.x, nearNeighbour.y, angle, radius), sampleSubset, realDistances);
},
dist0 = sumDistErrorByAngle(0),
@@ -37,16 +37,10 @@ export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleS
highBound = 0.0;
// Determine the closest quadrant
if (dist0 == dist180) {
if (dist90 > dist270)
lowBound = highBound = 270;
else
lowBound = highBound = 90;
} else if (dist90 == dist270) {
if (dist0 > dist180)
lowBound = highBound = 180;
else
lowBound = highBound = 0;
if (dist0 === dist180) {
if (dist90 > dist270) { lowBound = highBound = 270; } else { lowBound = highBound = 90; }
} else if (dist90 === dist270) {
if (dist0 > dist180) { lowBound = highBound = 180; } else { lowBound = highBound = 0; }
} else if (dist0 > dist180) {
if (dist90 > dist270) {
lowBound = 180;
@@ -55,15 +49,13 @@ export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleS
lowBound = 90;
highBound = 180;
}
} else {
if (dist90 > dist270) {
} else if (dist90 > dist270) {
lowBound = 270;
highBound = 360;
} else {
lowBound = 0;
highBound = 90;
}
}
// Determine the angle
let angle = binarySearchMin(lowBound, highBound, sumDistErrorByAngle);
@@ -73,21 +65,21 @@ export function placeNearToNearestNeighbour(node, nearNeighbour, radius, sampleS
// Phase 3
let
multiplier = 1/sampleSubset.length,
multiplier = 1 / sampleSubset.length,
sumForces;
for (let i = 0; i < endingIts; i++) {
sumForces = sumForcesToSample(node, sampleSubset, realDistances);
node.x += sumForces.x*multiplier;
node.y += sumForces.y*multiplier;
node.x += sumForces.x * multiplier;
node.y += sumForces.y * multiplier;
}
}
function sumForcesToSample(node, samples, sampleCache) {
function sumForcesToSample (node, samples, sampleCache) {
let nodeVx = 0,
nodeVy = 0,
x, y, l, i, sample;
for (i = samples.length-1; i >=0 ; i--) {
for (i = samples.length - 1; i >= 0; i--) {
sample = samples[i];
// jiggle so l won't be zero and divide by zero error after this
@@ -95,7 +87,7 @@ function sumForcesToSample(node, samples, sampleCache) {
y = node.y - sample.y || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - sampleCache[i]) / l;
x *= l, y *= l;
x *= l; y *= l;
nodeVx -= x;
nodeVy -= y;
}
@@ -110,27 +102,27 @@ function sumForcesToSample(node, samples, sampleCache) {
* @param {function(x)} fn - function that takes in a number x and returns a number
* @return {integer} - an integer x where f(x) is minimum
*/
function binarySearchMin(lb, hb, fn) {
function binarySearchMin (lb, hb, fn) {
while (lb <= hb) {
if(lb === hb) return lb;
if (lb === hb) return lb;
if(hb-lb == 1) {
if (hb - lb === 1) {
if (fn(lb) >= fn(hb)) return hb;
else return lb;
}
let
range = hb-lb,
valLowerHalf = fn(lb + range/4),
valHigherHalf = fn(lb + range*3/4);
range = hb - lb,
valLowerHalf = fn(lb + range / 4),
valHigherHalf = fn(lb + range * 3 / 4);
if (valLowerHalf > valHigherHalf)
if (valLowerHalf > valHigherHalf) {
lb = Math.floor((lb + hb) / 2);
else if (valLowerHalf < valHigherHalf)
} else if (valLowerHalf < valHigherHalf) {
hb = Math.ceil((lb + hb) / 2);
else {
lb += Math.floor(range/4);
hb -= Math.ceil(range/4);
} else {
lb += Math.floor(range / 4);
hb -= Math.ceil(range / 4);
}
}
return -1;

View File

@@ -1,5 +1,5 @@
import {takeSampleFrom} from "./helpers";
import {placeNearToNearestNeighbour} from "./interpCommon";
import {takeSampleFrom} from './helpers';
import {placeNearToNearestNeighbour} from './interpCommon';
/**
* Perform interpolation where the "parent" node is is estimated by pivot-based searching.
@@ -23,7 +23,7 @@ import {placeNearToNearestNeighbour} from "./interpCommon";
* @param {number} endingIts - for phase 3, how many iterations to refine the
* placement of each interpolated point
*/
export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIts) {
export default function (sampleSet, remainderSet, numPivots, distanceFn, endingIts) {
// Pivot based parent finding
let numBuckets = Math.floor(Math.sqrt(sampleSet.length));
let numNonPivots = sampleSet.length - numPivots;
@@ -44,8 +44,9 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
let distCache = []; // [ For each non-pivot sample:[For each Pivot: distance] ]
let bucketWidths = []; // [ For each Pivot: width of each bucket ]
for (let i = 0; i < nonPivotSamples.length; i++)
for (let i = 0; i < nonPivotSamples.length; i++) {
distCache[i] = [];
}
for (let j = 0; j < numPivots; j++) {
let pivot = pivots[j];
@@ -54,9 +55,10 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
for (let i = 0; i < numNonPivots; i++) {
let sample = nonPivotSamples[i];
distCache[i][j] = distanceFn(pivot, sample);
if (distCache[i][j] > maxDist)
if (distCache[i][j] > maxDist) {
maxDist = distCache[i][j];
}
}
bucketWidths.push(maxDist / numBuckets);
}
@@ -77,10 +79,9 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
}
// ---------------------------------------------------------------------
let sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample;
//Plot each of the remainder nodes
for (let i = remainderSet.length-1; i>=0; i--) {
// Plot each of the remainder nodes
for (let i = remainderSet.length - 1; i >= 0; i--) {
let node = remainderSet[i];
let sampleSubsetDistanceCache = [],
minDist, nearSample;
@@ -95,7 +96,7 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
if (index !== -1) {
sampleSubsetDistanceCache[index] = dist;
}
if (minDist === undefined || dist < minDist){
if (minDist === undefined || dist < minDist) {
minDist = dist;
nearSample = pivot;
}
@@ -107,18 +108,17 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
bucketNumber = 0;
}
for (let j = pivotsBuckets[p][bucketNumber].length-1; j>=0; j--) {
for (let j = pivotsBuckets[p][bucketNumber].length - 1; j >= 0; j--) {
let candidateNode = pivotsBuckets[p][bucketNumber][j];
let index = sampleSubset.indexOf(candidateNode);
if (index !== -1 && sampleSubsetDistanceCache[index] !== undefined)
dist = sampleSubsetDistanceCache[index]
else {
if (index !== -1 && sampleSubsetDistanceCache[index] !== undefined) {
dist = sampleSubsetDistanceCache[index];
} else {
dist = distanceFn(candidateNode, node);
if (index !== -1)
sampleSubsetDistanceCache[index] = dist;
if (index !== -1) { sampleSubsetDistanceCache[index] = dist; }
}
if (dist < minDist){
if (dist < minDist) {
minDist = dist;
nearSample = candidateNode;
}
@@ -127,9 +127,10 @@ export default function(sampleSet, remainderSet, numPivots, distanceFn, endingIt
// Fill in holes in cache
for (let k = 0; k < sampleSubset.length; k++) {
if (sampleSubsetDistanceCache[k] === undefined)
if (sampleSubsetDistanceCache[k] === undefined) {
sampleSubsetDistanceCache[k] = distanceFn(node, sampleSubset[k]);
}
}
placeNearToNearestNeighbour(node, nearSample, minDist, sampleSubset, sampleSubsetDistanceCache, endingIts);
}
}

View File

@@ -1,7 +1,7 @@
/**
* @return {number} a very small non-zero random number.
*/
export default function() {
export default function () {
let rand;
do {
rand = (Math.random() - 0.5) * 1e-6;

View File

@@ -1,5 +1,5 @@
import constant from "./constant";
import jiggle from "./jiggle";
import constant from './constant';
import jiggle from './jiggle';
/**
* Modified link force algorithm
@@ -8,7 +8,7 @@ import jiggle from "./jiggle";
* - removed other unused functions
* Alpha should be constant 1 for accurate simulation
*/
export default function() {
export default function () {
var dataSizeFactor,
distance = constant(30),
distances = [],
@@ -18,11 +18,11 @@ export default function() {
latestVelocityDiff = 0,
iterations = 1;
function force(alpha) {
function force (alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler!==null && stableVelocity>=0) {
for (let i = n-1, node; i>=0; i--) {
if (stableVeloHandler !== null && stableVelocity >= 0) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
@@ -32,46 +32,48 @@ export default function() {
// Each iteration in a tick
for (var k = 0, source, target, i, j, x, y, l; k < iterations; ++k) {
// For each link
for (i = 1; i < n; i++) for (j = 0; j < i; j++) {
for (i = 1; i < n; i++) {
for (j = 0; j < i; j++) {
// jiggle so l won't be zero and divide by zero error after this
source = nodes[i];
target = nodes[j];
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - distances[i*(i-1)/2+j]) / l * dataSizeFactor * alpha;
x *= l, y *= l;
l = (l - distances[i * (i - 1) / 2 + j]) / l * dataSizeFactor * alpha;
x *= l; y *= l;
target.vx -= x;
target.vy -= y;
source.vx += x;
source.vy += y;
}
}
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler!==null && stableVelocity>=0) {
if (stableVeloHandler !== null && stableVelocity >= 0) {
let velocityDiff = 0;
for (let i = n-1, node; i>=0; i--) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx-node.oldvx, node.vy-node.oldvy));
velocityDiff += Math.abs(Math.hypot(node.vx - node.oldvx, node.vy - node.oldvy));
}
velocityDiff /= n;
latestVelocityDiff = velocityDiff;
if(velocityDiff<stableVelocity){
if (velocityDiff < stableVelocity) {
stableVeloHandler();
}
}
}
function initialize() {
function initialize () {
if (!nodes) return;
// 0.5 to divide the force to two part for source and target node
dataSizeFactor = 0.5/(nodes.length-1);
dataSizeFactor = 0.5 / (nodes.length - 1);
initializeDistance();
}
function initializeDistance() {
function initializeDistance () {
if (!nodes) return;
for (let i = 1, n = nodes.length; i < n; i++) {
for (let j = 0; j < i; j++) {
@@ -80,17 +82,17 @@ export default function() {
}
}
force.initialize = function(_) {
force.initialize = function (_) {
nodes = _;
initialize();
};
force.iterations = function(_) {
force.iterations = function (_) {
return arguments.length ? (iterations = +_, force) : iterations;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance;
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), initializeDistance(), force) : distance;
};
force.latestAccel = function () {

View File

@@ -1,12 +1,12 @@
import constant from "./constant";
import jiggle from "./jiggle";
import constant from './constant';
import jiggle from './jiggle';
/**
* An implementation of Chalmers' 1996 Neighbour and Sampling algorithm.
* It uses random sampling to find the most suited neighbours from the
* data set.
*/
function sortDistances(a, b) {
function sortDistances (a, b) {
return b[1] - a[1];
}
@@ -25,18 +25,18 @@ export default function () {
* Apply spring forces at each simulation iteration.
* @param {number} alpha - multiplier for amount of force applied
*/
function force(alpha) {
function force (alpha) {
let n = nodes.length;
// Cache old velocity for comparison later
if (stableVeloHandler!==null && stableVelocity>=0) {
for (let i = n-1, node; i>=0; i--) {
if (stableVeloHandler !== null && stableVelocity >= 0) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
node.oldvx = node.vx;
node.oldvy = node.vy;
}
}
for (let i = n-1, node, samples; i>=0; i--) {
for (let i = n - 1, node, samples; i >= 0; i--) {
node = nodes[i];
samples = createRandomSamples(i);
@@ -52,16 +52,16 @@ export default function () {
}
// Calculate velocity changes, aka force applied.
if (stableVeloHandler!==null && stableVelocity>=0) {
if (stableVeloHandler !== null && stableVelocity >= 0) {
let velocityDiff = 0;
for (let i = n-1, node; i>=0; i--) {
for (let i = n - 1, node; i >= 0; i--) {
node = nodes[i];
velocityDiff += Math.abs(Math.hypot(node.vx-node.oldvx, node.vy-node.oldvy));
velocityDiff += Math.abs(Math.hypot(node.vx - node.oldvx, node.vy - node.oldvy));
}
velocityDiff /= n;
latestVelocityDiff = velocityDiff;
if(velocityDiff<stableVelocity){
if (velocityDiff < stableVelocity) {
stableVeloHandler();
}
}
@@ -74,14 +74,14 @@ export default function () {
* @param {number} dist - high dimensional distance between the two nodes
* @param {number} alpha - multiplier for the amount of force applied
*/
function setVelocity(source, target, dist, alpha) {
function setVelocity (source, target, dist, alpha) {
let x, y, l;
// jiggle so l won't be zero and divide by zero error after this
x = target.x + target.vx - source.x - source.vx || jiggle();
y = target.y + target.vy - source.y - source.vy || jiggle();
l = Math.sqrt(x * x + y * y);
l = (l - dist) / l * dataSizeFactor * alpha;
x *= l, y *= l;
x *= l; y *= l;
// Set the calculated velocites for both nodes.
target.vx -= x;
target.vy -= y;
@@ -90,11 +90,11 @@ export default function () {
}
// Called on nodes change and added to a simulation
function initialize() {
function initialize () {
if (!nodes) return;
// Initialize for each node some random neighbours.
for (let i = nodes.length-1; i>=0; i--) {
for (let i = nodes.length - 1; i >= 0; i--) {
let neighbs = pickRandomNodesFor(i, [i], neighbourSize);
// Sort the neighbour set by the distances.
neighbours[i] = new Map(neighbs.sort(sortDistances));
@@ -103,8 +103,8 @@ export default function () {
initDataSizeFactor();
}
function initDataSizeFactor(){
dataSizeFactor = 0.5/(neighbourSize+sampleSize);
function initDataSizeFactor () {
dataSizeFactor = 0.5 / (neighbourSize + sampleSize);
}
/**
@@ -116,7 +116,7 @@ export default function () {
* @param {number} size - max number of elements in the map to return.
* @return {array}
*/
function pickRandomNodesFor(index, exclude, size) {
function pickRandomNodesFor (index, exclude, size) {
let randElements = [];
let max = nodes.length;
@@ -126,14 +126,14 @@ export default function () {
break;
}
let rand = Math.floor((Math.random() * max));
let rand = Math.floor(Math.random() * max);
// Re-random until suitable value is found.
while (randElements.includes(rand) || exclude.includes(rand)) {
rand = Math.floor((Math.random() * max));
rand = Math.floor(Math.random() * max);
}
randElements.push(rand);
}
for(let i=randElements.length-1, rand; i>=0; i--){
for (let i = randElements.length - 1, rand; i >= 0; i--) {
rand = randElements[i];
randElements[i] = [rand, distance(nodes[index], nodes[rand])];
}
@@ -146,7 +146,7 @@ export default function () {
* @param {number} index - index of the node to generate sample for
* @return {map}
*/
function createRandomSamples(index) {
function createRandomSamples (index) {
// Ignore the current neighbours of the node and itself.
let exclude = [index];
exclude = exclude.concat(Array.from(neighbours[index].keys()));
@@ -160,13 +160,12 @@ export default function () {
* @param {map} samples - map of samples
* @return {map} - new map of neighbours
*/
function findNewNeighbours(neighbours, samples) {
function findNewNeighbours (neighbours, samples) {
let combined = [...neighbours.entries()].concat([...samples.entries()]);
combined = combined.sort(sortDistances);
return new Map(combined.slice(0, neighbourSize));
}
// API for initializing the algorithm and setting parameters
force.initialize = function (_) {
nodes = _;
@@ -186,7 +185,7 @@ export default function () {
};
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.latestAccel = function () {

View File

@@ -4,12 +4,13 @@
* to the better layout.
* @return {number} - stress of the layout.
*/
export function getStress(nodes, distance) {
let sumDiffSq = 0
export function getStress (nodes, distance) {
let sumDiffSq = 0;
let sumLowDDistSq = 0;
for (let j = nodes.length-1; j >= 1; j--) {
for (let j = nodes.length - 1; j >= 1; j--) {
for (let i = 0; i < j; i++) {
let source = nodes[i], target = nodes[j];
let source = nodes[i];
let target = nodes[j];
let lowDDist = Math.hypot(target.x - source.x, target.y - source.y);
let highDDist = distance(source, target);
sumDiffSq += Math.pow(highDDist - lowDDist, 2);

View File

@@ -1,4 +1,5 @@
import constant from "./constant";
/* eslint-disable block-scoped-var */
import constant from './constant';
/**
* Set the node id accessor to the specified i.
@@ -6,7 +7,7 @@ import constant from "./constant";
* @param {accessor} i - id accessor.
* @return {accessor} - node id accessor.
*/
function index(d, i) {
function index (d, i) {
return i;
}
@@ -14,7 +15,7 @@ function index(d, i) {
* t-SNE implementation in D3 by using the code existing in tsnejs
* (https://github.com/karpathy/tsnejs) to compute the solution.
*/
export default function() {
export default function () {
var id = index,
distance = constant(300),
nodes,
@@ -32,7 +33,7 @@ export default function() {
* Make a step in t-SNE algorithm and set the velocities for the nodes
* to accumulate the values from solution.
*/
function force() {
function force () {
// Make a step at each iteration.
step();
var solution = getSolution();
@@ -48,11 +49,13 @@ export default function() {
* Calculates the random number from Gaussian distribution.
* @return {number} random number.
*/
function gaussRandom() {
function gaussRandom () {
let u = 2 * Math.random() - 1;
let v = 2 * Math.random() - 1;
let r = u * u + v * v;
if (r == 0 || r > 1) return gaussRandom();
if (r === 0 || r > 1) {
return gaussRandom();
}
return u * Math.sqrt(-2 * Math.log(r) / r);
}
@@ -60,11 +63,11 @@ export default function() {
* Return the normalized number.
* @return {number} normalized random number from Gaussian distribution.
*/
function randomN() {
function randomN () {
return gaussRandom() * 1e-4;
}
function sign(x) {
function sign (x) {
return x > 0 ? 1 : x < 0 ? -1 : 0;
}
@@ -73,8 +76,8 @@ export default function() {
* @param {number} n - length of array.
* @return {Float64Array} - array of zeros with length n.
*/
function zeros(n) {
if (typeof(n) === 'undefined' || isNaN(n)) {
function zeros (n) {
if (typeof n === 'undefined' || isNaN(n)) {
return [];
}
return new Float64Array(n); // typed arrays are faster
@@ -87,7 +90,7 @@ export default function() {
* @param {number} d - columns.
* @return {array} - 2d array
*/
function random2d(n, d) {
function random2d (n, d) {
var x = [];
for (var i = 0; i < n; i++) {
var y = [];
@@ -106,7 +109,7 @@ export default function() {
* @param {number} tol - limit for entropy difference.
* @return {2d array} - 2d matrix containing probabilities.
*/
function d2p(data, perplexity, tol) {
function d2p (data, perplexity, tol) {
N = Math.floor(data.length);
var Htarget = Math.log(perplexity); // target entropy of distribution.
var P1 = zeros(N * N); // temporary probability matrix.
@@ -137,7 +140,7 @@ export default function() {
// Normalize p and compute entropy.
var Hhere = 0.0;
for (j = 0; j < N; j++) {
if (psum == 0) {
if (psum === 0) {
pj = 0;
} else {
pj = prow[j] / psum;
@@ -158,7 +161,6 @@ export default function() {
} else {
beta = (beta + betamax) / 2;
}
} else {
// Converse case. Make distrubtion less peaky.
betamax = beta;
@@ -180,7 +182,6 @@ export default function() {
for (j = 0; j < N; j++) {
P1[i * N + j] = prow[j];
}
}
// Symmetrize P and normalize it to sum to 1 over all ij
@@ -197,7 +198,7 @@ export default function() {
/**
* Initialize a starting (random) solution.
*/
function initSolution() {
function initSolution () {
Y = random2d(N, dim);
// Step gains to accelerate progress in unchanging directions.
gains = random2d(N, dim, 1.0);
@@ -209,7 +210,7 @@ export default function() {
/**
* @return {2d array} the solution.
*/
function getSolution() {
function getSolution () {
return Y;
}
@@ -217,7 +218,7 @@ export default function() {
* Do a single step (iteration) for the layout.
* @return {number} the current cost.
*/
function step() {
function step () {
iteration += 1;
var cg = costGrad(Y); // Evaluate gradient.
@@ -266,8 +267,7 @@ export default function() {
* @param {2d array} Y - the current solution to evaluate.
* @return {object} that contains a cost and a gradient.
*/
function costGrad(Y) {
function costGrad (Y) {
var pmul = iteration < 100 ? 4 : 1;
// Compute current Q distribution, unnormalized first.
@@ -323,13 +323,13 @@ export default function() {
* the better layout.
* @return {number} - stress of the layout.
*/
function getStress() {
function getStress () {
var totalDiffSq = 0,
totalHighDistSq = 0;
for (var i = 0, source, target, realDist, highDist; i < nodes.length; i++) {
for (var j = 0; j < nodes.length; j++) {
if (i !== j) {
source = nodes[i], target = nodes[j];
source = nodes[i]; target = nodes[j];
realDist = Math.hypot(target.x - source.x, target.y - source.y);
highDist = +distance(nodes[i], nodes[j]);
totalDiffSq += Math.pow(realDist - highDist, 2);
@@ -342,7 +342,7 @@ export default function() {
// API for initializing the algorithm, setting parameters and querying
// metrics.
force.initialize = function(_) {
force.initialize = function (_) {
nodes = _;
N = nodes.length;
// Initialize the probability matrix.
@@ -350,23 +350,23 @@ export default function() {
initSolution();
};
force.id = function(_) {
force.id = function (_) {
return arguments.length ? (id = _, force) : id;
};
force.distance = function(_) {
return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), force) : distance;
force.distance = function (_) {
return arguments.length ? (distance = typeof _ === 'function' ? _ : constant(+_), force) : distance;
};
force.stress = function() {
force.stress = function () {
return getStress();
};
force.learningRate = function(_) {
force.learningRate = function (_) {
return arguments.length ? (learningRate = +_, force) : learningRate;
};
force.perplexity = function(_) {
force.perplexity = function (_) {
return arguments.length ? (perplexity = +_, force) : perplexity;
};

View File

@@ -1,13 +1,13 @@
/**
* @return x value of a node
*/
export function x(d) {
export function x (d) {
return d.x;
}
/**
* @return y value of a node
*/
export function y(d) {
export function y (d) {
return d.y;
}