Change velocity-difference threshold calculation method and misc small non-functional changes (reverted from commit bb18055c66)
This commit is contained in:
@@ -1,98 +1,287 @@
|
||||
import {pointOnCircle, takeSampleFrom} from "./helpers";
|
||||
import {placeNearToNearestNeighbour} from "./interpCommon";
|
||||
export default function(sampleSet, remainderSet, interpSubset, nPivots, distanceFunction) {
|
||||
var distance = distanceFunction;
|
||||
|
||||
export default function(sampleSet, remainderSet, numPivots, distanceFn) {
|
||||
// Pivot based parent finding
|
||||
let numBuckets = Math.floor(Math.sqrt(sampleSet.length));
|
||||
let pivots = takeSampleFrom(sampleSet, numPivots);
|
||||
console.log("Pivots", pivots);
|
||||
// Common temporary variables
|
||||
let i, j, pivot, sample, bucketWidth; // Temp var, declared seperately to avoid GC
|
||||
|
||||
let pivotsBuckets = []; // [ For each Pivot:[For each bucket:[each point in bucket]] ]
|
||||
var numBuckets = Math.floor(Math.sqrt(sampleSet.length)),
|
||||
numPivots = nPivots,
|
||||
parents = [],
|
||||
maxDists = [],
|
||||
bucketWidths = [],
|
||||
pivotsBuckets = [];
|
||||
|
||||
for (i = 0; i < numPivots; i++) {
|
||||
console.log("Parents, pivots=", numPivots);
|
||||
|
||||
var pivots = createRandomSample(sampleSet.concat(remainderSet), sampleSet.length, numPivots);
|
||||
|
||||
for (var i = 0; i < numPivots; i++) {
|
||||
pivotsBuckets[i] = [];
|
||||
for (j = 0; j < numBuckets; j++) {
|
||||
for (var j = 0; j < numBuckets; j++) {
|
||||
pivotsBuckets[i][j] = [];
|
||||
}
|
||||
}
|
||||
|
||||
// Pre-calculate distance between each sample to each pivot
|
||||
let distCache = [], // [ For each Sample:[For each Pivot: distance] ]
|
||||
bucketWidths = []; // [ For each Pivot: width of each bucket ]
|
||||
// Pre-processing
|
||||
var fullDists = []
|
||||
for (var i = 0; i < sampleSet.length; i++) {
|
||||
fullDists[i] = [];
|
||||
}
|
||||
|
||||
for (i = 0; i < sampleSet.length; i++)
|
||||
distCache[i] = [];
|
||||
|
||||
for (j = 0; j < numPivots; j++) {
|
||||
pivot = pivots[j],
|
||||
maxDist = -1;
|
||||
|
||||
for (i = 0; i < sampleSet.length; i++) {
|
||||
sample = sampleSet[i];
|
||||
if (pivot !== sample) {
|
||||
distCache[i][j] = distanceFn(pivot, sample);
|
||||
if (distCache[i][j] > maxDist)
|
||||
maxDist = distCache[i][j];
|
||||
for (var j = 0, maxDist = -1; j < numPivots; j++) {
|
||||
var c1 = pivots[j];
|
||||
for (var i = 0; i < sampleSet.length; i++) {
|
||||
var c2 = sampleSet[i];
|
||||
if (c1 !== c2) {
|
||||
var dist = distance(c1, c2, props, norm);
|
||||
// console.log(dist, c1, c2);
|
||||
if (dist > maxDist) {
|
||||
maxDist = dist;
|
||||
}
|
||||
fullDists[i][j] = dist;
|
||||
} else {
|
||||
distCache[i][j] = 0;
|
||||
fullDists[i][j] = 0.0001;
|
||||
}
|
||||
}
|
||||
|
||||
maxDists.push(maxDist);
|
||||
bucketWidths.push(maxDist / numBuckets);
|
||||
}
|
||||
|
||||
// console.log(distCaches);
|
||||
// console.log(fullDists);
|
||||
|
||||
// Put samples (pivot included) into buckets
|
||||
for (j = 0; j < numPivots; j++) {
|
||||
bucketWidth = bucketWidths[j];
|
||||
for (i = 0; i < sampleSet.length; i++) {
|
||||
sample = sampleSet[i];
|
||||
pivotsBuckets[j][Math.floor(distCache[i][j] / bucketWidth)].push(sample);
|
||||
for (var j = 0; j < numPivots; j++) {
|
||||
var bucketWidth = bucketWidths[j];
|
||||
for (var i = 0; i < sampleSet.length; i++) {
|
||||
var tmp = pivotsBuckets[j][Math.floor((fullDists[i][j] - 0.0001) / bucketWidth)];
|
||||
// pivotsBuckets[j][Math.floor((fullDists[i][j] - 0.0001) / bucketWidth)].push(sampleSet[i]);
|
||||
// console.log(tmp, i, j, bucketWidth, Math.floor((fullDists[i][j] - 0.0001) / bucketWidth));
|
||||
tmp.push(sampleSet[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Plot each of the remainder nodes
|
||||
for (let node of remainderSet) {
|
||||
let sampleSubsetDistanceCache = [],
|
||||
sampleSubset = takeSampleFrom(sampleSet, Math.sqrt(sampleSet.length)).sample;
|
||||
for (var i = 0; i < remainderSet.length; i++) {
|
||||
var node = remainderSet[i],
|
||||
minNode = sampleSet[0],
|
||||
minDist = 0,
|
||||
sampleCache = [];
|
||||
|
||||
// Pivot based parent search
|
||||
for (let p = 0; p < numPivots; p++) {
|
||||
let pivot = pivots[p];
|
||||
let bucketWidth = bucketWidths[p];
|
||||
|
||||
let dist = distanceFn(node, pivot);
|
||||
let index = sampleSubset.indexOf(pivot);
|
||||
if (index !== -1)
|
||||
sampleSubsetDistanceCache[index] = dist;
|
||||
|
||||
let bucketNumber = Math.floor(dist / bucketWidth);
|
||||
if (bucketNumber >= numBuckets) {
|
||||
bucketNumber = numBuckets - 1;
|
||||
} else if (bucketNumber < 0) { // Should never be negative anyway
|
||||
bucketNumber = 0;
|
||||
}
|
||||
|
||||
let clDist, minNode;
|
||||
for (let candidateNode of pivotsBuckets[p][bucketNumber]) {
|
||||
|
||||
dist = distanceFn(candidateNode, node);
|
||||
if (candidateNode <= clDist) {
|
||||
clDist = candidateNode;
|
||||
minNode = bucketContents[w];
|
||||
var node = remainderSet[i];
|
||||
var clDist = Number.MAX_VALUE;
|
||||
for (var p = 0; p < numPivots; p++) {
|
||||
var comp = pivots[p];
|
||||
var bucketWidth = bucketWidths[p];
|
||||
if (node !== comp) {
|
||||
var dist = distance(node, comp, props, norm);
|
||||
var bNum = Math.floor((dist - 0.0001) / bucketWidth);
|
||||
if (bNum >= numBuckets) {
|
||||
bNum = numBuckets - 1;
|
||||
} else if (bNum < 0) {
|
||||
bNum = 0;
|
||||
}
|
||||
var bucketContents = pivotsBuckets[p][bNum];
|
||||
for (var w = 0; w < bucketContents.length; w++) {
|
||||
var c1 = bucketContents[w];
|
||||
if (c1 != node) {
|
||||
dist = distance(c1, node, props, norm);
|
||||
if (dist <= clDist) {
|
||||
clDist = dist;
|
||||
minNode = bucketContents[w];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (let k = 0; k < sampleSubset.length; k++) {
|
||||
if (sampleSubsetDistanceCache[k] !== undefined)
|
||||
sampleSubsetDistanceCache[k] = distanceFn(node, sampleSubset[k]);
|
||||
|
||||
for (var k = 0; k < interpSubset.length; k++) {
|
||||
sampleCache[k] = distance(node, interpSubset[k], props, norm);
|
||||
}
|
||||
let radius = distanceFn(node, minNode);
|
||||
placeNearToNearestNeighbour(node, minNode, radius, sampleSubset, sampleSubsetDistanceCache);
|
||||
var radius = distance(node, minNode, props, norm);
|
||||
placeNearToNearestNeighbour(node, minNode, interpSubset, sampleCache, radius);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function placeNearToNearestNeighbour(node, minNode, sample, sampleCache, radius) {
|
||||
var
|
||||
dist0 = 0.0,
|
||||
dist90 = 0.0,
|
||||
dist180 = 0.0,
|
||||
dist270 = 0.0,
|
||||
lowBound = 0.0,
|
||||
highBound = 0.0;
|
||||
|
||||
dist0 = sumDistToSample(node, centerPoint(0, radius, minNode.x, minNode.y), sample, sampleCache);
|
||||
dist90 = sumDistToSample(node, centerPoint(90, radius, minNode.x, minNode.y), sample, sampleCache);
|
||||
dist180 = sumDistToSample(node, centerPoint(180, radius, minNode.x, minNode.y), sample, sampleCache);
|
||||
dist270 = sumDistToSample(node, centerPoint(270, radius, minNode.x, minNode.y), sample, sampleCache);
|
||||
|
||||
// console.log(dist0, dist90, dist180, dist270);
|
||||
|
||||
// Determine the closest quadrant
|
||||
|
||||
if (dist0 == dist180) {
|
||||
if (dist90 > dist270)
|
||||
lowBound = highBound = 270;
|
||||
else
|
||||
lowBound = highBound = 90;
|
||||
|
||||
} else if (dist90 == dist270) {
|
||||
if (dist0 > dist180)
|
||||
lowBound = highBound = 180;
|
||||
else
|
||||
lowBound = highBound = 0;
|
||||
} else if (dist0 > dist180) {
|
||||
if (dist90 > dist270) {
|
||||
lowBound = 180;
|
||||
highBound = 270;
|
||||
} else {
|
||||
lowBound = 90;
|
||||
highBound = 180;
|
||||
}
|
||||
} else {
|
||||
if (dist90 > dist270) {
|
||||
lowBound = 270;
|
||||
highBound = 360;
|
||||
} else {
|
||||
lowBound = 0;
|
||||
highBound = 90;
|
||||
}
|
||||
}
|
||||
|
||||
var angle = binarySearch(lowBound, highBound, minNode.x, minNode.y, radius, node, sample, sampleCache);
|
||||
var newPoint = centerPoint(angle, radius, minNode.x, minNode.y);
|
||||
|
||||
// console.log(newPoint);
|
||||
node.x = newPoint.x;
|
||||
node.y = newPoint.y;
|
||||
|
||||
// for (var i = 0; i < 20; i++) {
|
||||
// var forces = sumForcesToSample(node, sample, sampleCache);
|
||||
// // console.log(forces);
|
||||
// node.x += forces.x;
|
||||
// node.y += forces.y;
|
||||
// }
|
||||
|
||||
}
|
||||
|
||||
|
||||
function centerPoint(angle, radius, posX, posY) {
|
||||
var x = posX + Math.cos(toRadians(angle) * radius);
|
||||
var y = posY + Math.sin(toRadians(angle) * radius);
|
||||
|
||||
return {
|
||||
x: x,
|
||||
y: y
|
||||
};
|
||||
}
|
||||
|
||||
function toRadians(degrees) {
|
||||
return degrees * (Math.PI / 180);
|
||||
}
|
||||
|
||||
function sumDistToSample(node, point, sample, sampleCache) {
|
||||
var total = 0.0;
|
||||
// console.log(total, sample);
|
||||
|
||||
for (var i = 0; i < sample.length; i++) {
|
||||
var s = sample[i];
|
||||
var realDist = Math.hypot(s.x - point.x, s.y - point.y);
|
||||
var desDist = sampleCache[i];
|
||||
total += Math.abs(realDist - desDist);
|
||||
}
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
|
||||
function sumForcesToSample(node, sample, sampleCache) {
|
||||
var x = 0,
|
||||
y = 0,
|
||||
// len = 0,
|
||||
dist = 0,
|
||||
force,
|
||||
SPRING_FORCE = 0.7;
|
||||
|
||||
for (var i = 0, unitX, unitY; i < sample.length; i++) {
|
||||
var s = sample[i];
|
||||
if (s !== node) {
|
||||
unitX = s.x - node.x;
|
||||
unitY = s.y - node.y;
|
||||
|
||||
// Normalize coordinates
|
||||
len = Math.sqrt(unitX * unitX + unitY * unitY);
|
||||
unitX /= len;
|
||||
unitY /= len;
|
||||
|
||||
console.log(unitX, unitY);
|
||||
|
||||
var realDist = Math.sqrt(unitX * unitX + unitY * unitY);
|
||||
var desDist = sampleCache[i];
|
||||
dist += realDist - desDist;
|
||||
force = (SPRING_FORCE * dist);
|
||||
|
||||
x += unitX * force;
|
||||
y += unitY * force;
|
||||
}
|
||||
|
||||
x *= (1.0 / sample.length);
|
||||
y *= (1.0 / sample.length);
|
||||
|
||||
return {
|
||||
x: x,
|
||||
y: y
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
function createRandomSample(nodes, max, size) {
|
||||
var randElements = [];
|
||||
|
||||
for (var i = 0; i < size; ++i) {
|
||||
// Stop when no new elements can be found.
|
||||
if (randElements.size >= nodes.length) {
|
||||
break;
|
||||
}
|
||||
var rand = Math.floor((Math.random() * max));
|
||||
// If the rand is already in random list or in exclude list
|
||||
// ignore it and get a new value.
|
||||
while (randElements.includes(rand)) {
|
||||
rand = Math.floor((Math.random() * max));
|
||||
}
|
||||
randElements.push(nodes[rand]);
|
||||
}
|
||||
|
||||
return randElements;
|
||||
}
|
||||
|
||||
|
||||
function binarySearch(lb, hb, x, y, r, node, sample, sampleCache) {
|
||||
while (lb <= hb) {
|
||||
var mid = Math.round((lb + hb) / 2);
|
||||
|
||||
if ((mid === lb) || (mid === hb)) {
|
||||
if (sumDistToSample(node, centerPoint(lb, r, x, y), sample, sampleCache) >=
|
||||
sumDistToSample(node, centerPoint(hb, r, x, y), sample, sampleCache)) {
|
||||
return hb;
|
||||
} else {
|
||||
return lb;
|
||||
}
|
||||
} else {
|
||||
var distMidLeft = sumDistToSample(node, centerPoint(mid + 1, r, x, y), sample, sampleCache);
|
||||
var distMidRight = sumDistToSample(node, centerPoint(mid - 1, r, x, y), sample, sampleCache);
|
||||
var distMid = sumDistToSample(node, centerPoint(mid, r, x, y), sample, sampleCache);
|
||||
|
||||
if (distMid > distMidLeft) {
|
||||
lb = mid + 1;
|
||||
} else if (distMid > distMidRight) {
|
||||
hb = mid - 1;
|
||||
} else {
|
||||
return mid;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user